scholarly journals Comparison of the Nutritional Properties and Transcriptome Profiling Between the Two Different Harvesting Periods of Auricularia polytricha

2021 ◽  
Vol 8 ◽  
Author(s):  
Wenliang Wang ◽  
Yansheng Wang ◽  
Zhiqing Gong ◽  
Shifa Yang ◽  
Fengjuan Jia

Auricularia polytricha (A. polytricha), regarded as an edible and medical mushroom, has attracted toward the research interests because of the high nutrition and bioactivity. The nutritional and medical properties of A. polytricha have been well-studied; however, research about the difference of the nutritional properties and transcriptome profiling between the two different harvesting periods of A. polytricha was limited. In this study, the nutritional properties and transcriptome profiling were compared between the two different harvesting periods of A. polytricha: AP_S1 (the stage for the first harvesting period) and AP_S2 (the stage for the third harvesting period). This study showed that AP_S1 had the more growth advantages than AP_S2 including biomass, auricle area and thickness, protein and calcium contents, and most species of the amino acid contents, which contributed to the higher sensory evaluation and acceptability of AP_S1. Transcriptome profiling showed that a total of 30,298 unigenes were successfully annotated in the two different harvesting periods of A. polytricha. At a threshold of two-fold change, 1,415 and 3,213 unigenes were up- and downregulated, respectively. All the differentially expressed genes (DEGs) analysis showed that the some synthesis and metabolic processes were strengthened in AP_S1, especially the synthesis and metabolism of the amino acids and protein. The enhanced energy metabolism pathways could provide more energy for AP_S1 to synthesize the nutritional substance. Moreover, the expressions of 10 selected DEGs involved in the amino acid and protein synthesis pathways and energy metabolism pathways were higher in AP_S1 compared to AP_S2, consistent with Illumina analysis. To the best of our knowledge, this is the first study that compares the nutritional properties and transcriptome profiling between the two different harvesting periods of A. polytricha and the results can present insights into the growth and genetic characteristics of A. polytricha.

2020 ◽  
Vol 151 ◽  
pp. 01047
Author(s):  
Sri S. Ningsih ◽  
Dafit Ariyanto ◽  
Dian Puspitasari ◽  
Anuraga Jayanegara ◽  
Hamim Hamim ◽  
...  

Amino acids are important components of mangrove plant metabolisms. The aim of this study was to determine the relationship of mangrove R. mucronata leaf colors to the amino acid content. This study was conducted between March to August 2019. The leaves were taken 50 g. The assessment of Amino acids was conducted using UPLC Waters Acquity Class H with PDA Detector. The principal component analysis (PCA) was used to determine the relationship analysis between R. mucronata leaf colors and amino acid concentrations. The largest content was L glutamic acid with a green leaf content of 6139.57 ± 694.17 mg/kg and yellow leaf content of 6105.013 ± 113.2058 mg/kg. The results of PCA 1 showed that the influential amino acids were L-threonine (0.94), L-tyrosine (0.96), L-alanine (0.92), L-vanin (0.93), and PCA 2 showed glutamic acid (0.91). These results indicated that the difference in mangrove leaf colors affects the amino acid contents in the leaves.


2001 ◽  
Vol 281 (4) ◽  
pp. G1034-G1043 ◽  
Author(s):  
Kousei Ito ◽  
Hiroshi Suzuki ◽  
Yuichi Sugiyama

Multidrug resistance-associated protein 3 (MRP3), unlike other MRPs, transports taurocholate (TC). The difference in TC transport activity between rat MRP2 and MRP3 was studied, focusing on the cationic amino acids in the transmembrane domains. For analysis, transport into membrane vesicles from Sf9 cells expressing wild-type and mutated MRP2 was examined. Substitution of Arg at position 586 with Leu and Ile and substitution of Arg at position 1096 with Lys, Leu, and Met resulted in the acquisition of TC transport activity, while retaining transport activity for glutathione and glucuronide conjugates. Substitution of Leu at position 1084 of rat MRP3 (which corresponds to Arg-1096 in rat MRP2) with Lys, but not with Val or Met, resulted in the loss of transport activity for TC and glucuronide conjugates. These results suggest that the presence of the cationic charge at Arg-586 and Arg-1096 in rat MRP2 prevents the transport of TC, whereas the presence of neutral amino acids at the corresponding position of rat MRP3 is required for the transport of substrates.


Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2634-2643 ◽  
Author(s):  
Vahid Afshar-Kharghan ◽  
José A. López

We investigated the molecular genetic and biosynthetic basis of Bernard-Soulier syndrome in a severely affected white woman. Flow cytometric analysis showed a severe deficiency of glycoprotein (GP) Ib, GP IX, and GP V on the surface of her platelets. Similarly, GP Ibα was undetectable by immunoblot analysis of platelet lysates. Surprisingly, a large quantity of a 70-kD protein (which probably represents a GP Ibα degradation product) was found in the patient's plasma in much greater quantities than in the plasma of an unaffected individual. To analyze the molecular lesion responsible for the disorder, we amplified and sequenced gene segments corresponding to the entire coding regions of the GP Ibα, GP Ibβ, and GP IX genes. The patient was homozygous for a specific GP Ibα allele that contained two tandem VNTR repeats in the region encoding the macroglycopeptide (C variant) and three differences from the published GP Ibα gene sequence. Two mutations were unlikely to be involved in the disorder: the substitution of a single base (T → C) in the second nucleotide of exon 2, which is in the 5′ untranslated region of the GP Ibα transcript, and a silent mutation in the third base of the codon for Arg342 (A → G) that does not change the amino acid sequence. The third mutation was a deletion of the last two bases of the codon for Tyr492 (TAT). This mutation causes a frameshift that alters the GP Ibα amino acid sequence, beginning within its transmembrane region. The mutant polypeptide contains 81 novel amino acids and is 38 amino acids shorter than its wild-type counterpart. The new sequence changes the hydrophobic nature of the transmembrane domain and greatly decreases the net positive charge of what had been the cytoplasmic domain. The deletion mutation was introduced into the GP Ibα cDNA, alone and in combination with the 5′ mutation, and expressed in Chinese hamster ovary (CHO) cells. The deletion alone severely reduced GP Ibα expression on the cell surface. Expression was not decreased further by addition of the 5′ mutation, confirming that the deletion was the cause of the Bernard-Soulier phenotype. Stable cell lines expressing the mutant polypeptide secreted large amounts of the polypeptide into the medium, suggesting that the mutant anchors poorly in the plasma membrane. Nevertheless, a fraction of the mutant was able to associate with GP Ibβ, as demonstrated by their coimmunoprecipitation with a GP Ibβ antibody.


2017 ◽  
Vol 25 (2) ◽  
pp. 85-90 ◽  
Author(s):  
Anket Sharma ◽  
Vinod Kumar ◽  
Ashwani Kumar Thukral ◽  
Renu Bhardwaj

Abstract Pesticides are applied to protect crops from a variety of insect pests but their application cause toxicity to plants that results, among others, in reduction of protein as well as amino acid contents. The present study is aimed at observing the effect of seed pre-soaking with 24-epibrassinolide (EBL) on the protein and amino acid content in the leaves of Brassica juncea L. grown in soil that is amended with pesticide im-idacloprid (IMI). Soil amendment with IMI resulted in a decrease in the contents in leaves of total proteins and 21 amino acids studied. Seed soaking with 100 nM of EBL resulted in the recovery of total protein as well as amino acid contents in leaves, when compared with plants grown in only IMI amended soils.


1981 ◽  
Vol 241 (6) ◽  
pp. F597-F604 ◽  
Author(s):  
D. W. Barfuss ◽  
J. A. Schafer

When isolated segments of rabbit proximal straight tubules were perfused under oil at 37 degrees C, we observed that droplets of absorbate formed on the peritubular surface. Volume absorption under these conditions was the same as with customary aqueous bathing solutions when calculated either from the rate of absorbate formation (0.39 +/- 0.03 nl X min-1 X mm-1) or from the difference in measured perfusion and collection rates (0.37 +/- 0.04 nl X min-1 X mm-1). Absorbate formation continued at a steady rate for at least 2 h but was inhibited by 71% at 28 degrees C. The absorbate was found to have a composition that differed from the perfusate, as would be expected in the presence of preferential absorption of glucose, amino acids, and HCO-3. The Cl- concentration in the absorbate was 11.2 +/- 1.8 mM less than in the perfusate. The glucose concentration in the absorbate was 4.5 mM compared with 0.9 mM in the perfusate. Finally, the nonmetabolizable amino acid cycloleucine, which was added to the perfusate at 0.35 mM, had a concentration of 2.9 mM in the epithelial cells compared with 1.6 mM in the absorbate. These data establish the usefulness of this technique for examining solute and water absorption in the proximal nephron and show that the absorbate can differ considerably in solute composition from the luminal perfusate.


2005 ◽  
Vol 17 (2) ◽  
pp. 216
Author(s):  
P. Booth ◽  
T. Watson ◽  
H. Leese

Pre-implantation embryos can produce and consume amino acids in a manner dependent upon stage of embryonic development (Partridge and Leese 1996 Reprod. Fert. Dev. 8, 945) that may also be predictive of subsequent viability (Houghton et al. 2002 Hum. Reprod. 17, 999). To examine these relationships in the pig, the appearance or depletion of 18 amino acids from a presumptive near-physiological mixture was determined by HPLC in porcine in vitro-produced embryos from the zygote to the blastocyst stage. Cumulus oocyte complexes derived from slaughterhouse prepubertal pig ovaries were matured for 40 h in modified TCM-199 before being fertilized (Day 0) with frozen thawed semen in tris-based medium. After 6 h, presumptive zygotes were denuded and cultured in groups of 20 in NCSU medium modified to contain a physiological mixture of 18 amino acids including 0.1 mM glutamine (NCSUaa). Groups of 2–10 embryos (dependent on stage) were removed on Day 0 (1 cell), Day 1 (2- and 4-cell), Day 4 (compact morula), and Day 6 (blastocyst) and placed in 4 μL NCSUaa for 24 h. After incubation, the embryos were removed and the medium analyzed by HPLC. Each stage was replicated 3–9 times. Since amino acid profiles of 2- and 4-cell embryos were not different, data were combined. Overall, arginine (1.19 ± 0.33), glutamine (0.78 ± 0.34) and threonine (0.05 ± 0.04) were significantly (P < 0.01) depleted from the medium whereas alanine (0.21 ± 0.1), glycine (0.20 ± 0.06), asparagine (0.13 ± 0.5), lysine (0.1 ± 0.03), isoleucine (0.08 ± 0.01), valine (0.05 ± 0.01), leucine (0.04 ± 0.02), phenylalanine (0.03 ± 0.01), and histidine (0.02 ± 0.04) significantly (P < 0.05) accumulated (mean of the 4 sampling timepoints; all values pmol/embryo/h ± SEM). The difference between amino acid accumulation and depletion (balance) was approximately equivalent between Day 0 and the morula stage although turnover (sum of depletion and accumulation) steadily decreased during this period from 3.1 on Day 0 to 1.35 pmol/embryo/h at the morula stage. However, at the blastocyst stage, turnover and balance increased to 6.32 and 2.42 pmol/embryo/h, respectively, i.e. net appearance occurred. Notable changes in amino acid profile during development included decreases in accumulation of asparagine, glutamate, and glycine in the medium and the depletion of glutamine over Days 0, 1, and 4, followed by reversal of these trends by Day 6. These data suggest that pig embryos can alter the accumulation and depletion rates of amino acids in a manner that is dependent on the specific amino acid and the stage of embryonic development. This work was supported by BBSRC.


2001 ◽  
Vol 26 (2) ◽  
pp. 443-446 ◽  
Author(s):  
D.G. Morris ◽  
P. Humpherson ◽  
H.J. Leese ◽  
J.M. Sreenan

AbstractThere is no information on the metabolism of the cattle embryo during the period from day 8 to 16 a period of greatest embryonic loss. In this study the rate of protein synthesis and phosphorylation was measured in 13 to 15 day old cattle embryos. The rate of glucose utilisation and amino acid uptake/efflux by day 14 to 16 embryos was also measured. Protein synthesis and phosphorylation activity when expressed per unit of protein decreased with increasing embryo size and age. Similarly the rate of glucose utilisation was greatest for the earlier day 14 embryos. Embryos differed in their requirement for different amino acids. The pattern of uptake/efflux was similar to that of the earlier day 7 embryo. This study suggests that the metabolic rate of cattle embryos expressed per unit of protein content tends to decrease with increasing age and size from the initial burst of activity at day 13 around the time that expansion of the embryo begins.


2003 ◽  
Vol 284 (5) ◽  
pp. C1176-C1184 ◽  
Author(s):  
Todd E. Gillis ◽  
Chris D. Moyes ◽  
Glen F. Tibbits

Cardiac myofibrils isolated from trout heart have been demonstrated to have a higher sensitivity for Ca2+ than mammalian cardiac myofibrils. Using cardiac troponin C (cTnC) cloned from trout and mammalian hearts, we have previously demonstrated that this comparatively high Ca2+ sensitivity is due, in part, to trout cTnC (ScTnC) having twice the Ca2+ affinity of mammalian cTnC (McTnC) over a broad range of temperatures. The amino acid sequence of ScTnC is 92% identical to McTnC. To determine the residues responsible for the high Ca2+ affinity, the function of a number of ScTnC and McTnC mutants was characterized by monitoring an intrinsic fluorescent reporter that monitors Ca2+ binding to site II (F27W). The removal of the COOH terminus (amino acids 90–161) from ScTnC and McTnC maintained the difference in Ca2+ affinity between the truncated cTnC isoforms (ScNTnC and McNTnC). The replacement of Gln29 and Asp30 in ScNTnC with the corresponding residues from McNTnC, Leu and Gly, respectively, reduced Ca2+ affinity to that of McNTnC. These results demonstrate that Gln29 and Asp30 in ScTnC are required for the high Ca2+ affinity of site II.


1999 ◽  
Vol 277 (2) ◽  
pp. F204-F210 ◽  
Author(s):  
Olga H. Brokl ◽  
William H. Dantzler

Amino acids are apparently recycled between loops of Henle and vasa recta in the rat papilla in vivo. To examine more closely papillary amino acid transport, we measured transepithelial fluxes ofl-[14C]alanine and [14C]taurine in thin limbs of Henle’s loops isolated from rat papilla and perfused in vitro. In descending thin limbs (DTL) in vitro, unidirectional bath-to-lumen fluxes tended to exceed unidirectional lumen-to-bath fluxes for both radiolabeled amino acids, although the difference was statistically significant only for taurine. In ascending thin limbs (ATL) in vitro, unidirectional lumen-to-bath fluxes tended to exceed unidirectional bath-to-lumen fluxes, although the difference was again statistically significant only for taurine. These results are compatible with apparent directional movements of amino acids in vivo. However, none of the unidirectional fluxes was saturable or inhibitable, an observation compatible with apparent reabsorption from the ATL in vivo but not compatible with apparent movement from vasa recta to DTL in vivo. There was no evidence of net active transepithelial transport when concentrations of radiolabeled amino acids were matched on both sides of perfused tubule segments. These data suggest that regulation of amino acid movement in vivo may involve the vasa recta, not the DTL of Henle’s loops. The data also suggest that transepithelial movement of amino acids in thin limbs of Henle’s loop may occur via a paracellular route.


1993 ◽  
Vol 16 (7) ◽  
pp. 537-544 ◽  
Author(s):  
R. Tu ◽  
R.C. Quijano ◽  
C.L. Lu ◽  
S. Shen ◽  
E. Wang ◽  
...  

A new biomaterial has been developed by fixing native collagens with a polyepoxy compound (PC) fixative. Prior studies have shown that this biomaterial has comparable properties as compared to collagen fixed with glutaraldehyde (GA) and thus has a great promise for use as an implantable bioprosthesis. The purpose of this study was to understand the mechanism of the amino acids-PC reactions in the fixation process. Bovine arteries were fixed with PC under various pH, concentration and temperature conditions as a function of fixation time. Individual amino acid components in the fresh and the fixed arteries were assayed using a Beckman amino acid analyzer to determine the degree of tanning. The denaturation temperature (Td) was also measured on each sample. Since the denaturation temperature is a direct indication of cross-linking of individual amino acids with the fixative, the difference in the degree of tanning for the same increase in Td may be indicative of the quantity of the masked, non-cross-linked amino acids. The fixation reaction data indicated that not all amino acids were cross-linked upon contacting the PC fixative. Masking appeared to be more substantial with a fixation at higher pH values.


Sign in / Sign up

Export Citation Format

Share Document