scholarly journals Long Non-Coding RNA PCAT6 Induces M2 Polarization of Macrophages in Cholangiocarcinoma via Modulating miR-326 and RhoA-ROCK Signaling Pathway

2021 ◽  
Vol 10 ◽  
Author(s):  
Jianfei Tu ◽  
Fazong Wu ◽  
Li Chen ◽  
Liyun Zheng ◽  
Yang Yang ◽  
...  

LncRNAs can act crucial roles in multiple tumors including cholangiocarcinoma (CCA). M2 polarization of macrophages is crucial for their biological roles in immunologic tolerance, which is able to induce tumorigenesis. Given that increasing evidence have suggested that lncRNAs could participate in modulating immune cell differentiation and function. Our current study was aimed to identify the underlying mechanism of lncRNA prostate cancer-associated transcript 6 (PCAT6) in CCA progression via regulating M2 macrophage polarization. PCAT6 has been reported as an oncogene in many cancers. In our work, we observed increased expression of PCAT6 in CCA patients. PCAT6 expression in various types of immune cells derived from CCA patients was tested by quantitative real-time PCR (qRT-PCR). It was revealed that PCAT6 was highly expressed in macrophages, which indicated that PCAT6 might regulate the function of macrophages to promote CCA progression. Then, via establishing CCA xenograft mouse model, we found loss of PCAT6 obviously triggered the immune response and reduced the in vivo tumor growth. In addition, overexpression of PCAT6 led to the M2 polarization of THP-1-differentiated macrophages. Moreover, miR-326 was predicted and proved as a target for PCAT6. In addition, down-regulation of PCAT6 repressed M2 polarization of macrophages, which was reversed by miR-326 inhibitors. The increase of PCAT6 induced the accumulation of ROS, mitochondrial and metabolic dysfunction in macrophages and mimics of miR-326 exhibited an opposite process. RohA has been recognized as a significant regulator of immune cell function. In our current work, we observed that RohA function as a downstream target for miR-326. In conclusion, our study highlighted a significant role of PCAT6/miR-326/RohA in immune response of macrophages in CCA and indicated PCAT6 as a potential target of immunotherapy in CCA.

2020 ◽  
Author(s):  
Wei Liu ◽  
Muyu Yu ◽  
Feng Chen ◽  
Dong Xie ◽  
Longqing Wang ◽  
...  

Abstract Background: Many patients suffer from implant loosening after the implantation of titanium alloy caused by immune response to the foreign bodies and this could inhibit osteogenesis, which could possibly give rise to poor osteointegration and there is currently no appropriate solution in clinical practice. Exosomes overexpressing miRNA has been proven to be a suitable candidate for solving this problem. In this study, we explored whether miR-181b could exert beneficial effect on promoting M2 macrophage polarization, thus inhibiting inflammation as well as promoting osteogenesis and elaborated the underlying mechanism in vitro. Furthermore, we aimed to find whether exosomes overexpressing miR-181b (Exo-181b) could enhance osteointegration in vivo.Methods: In vitro and in vivo studies were carried out for assessing the anti-inflammatory and pro-osteogenesis effect of miR-181b. In vitro, ELISA was applied for the detection of the inflammation factors levels including IL-6, TNF-α, as well as IL-10 and the percentage of M1 or M2 polarization was determined by flow cytometry. Also, qRT-PCR was used for the detection of the relative gene expression of the CCR7, CD206, Arg-1, iNOS, VEGF and BMP-2 genes. Western blotting was applied for detecting the protein expression of PRKCD, AKT and p-AKT. In vivo, we established air pouch model for evaluating the effect of Exo-181b on macrophage polarization and distal femoral bone defect model was established for determining the osteointegration effect of Exo-181b by MicroCT, sequential fluorescent labeling and histological analysis. Results: In vitro, we firstly verified that miR-181b significantly enhanced M2 polarization and inhibited inflammation by suppressing PRKCD and activating p-AKT. Then, in vivo, we verified that Exo-181b enhanced M2 polarization, reduced the inflammatory response and enhanced osteointegration. Conclusions: MiR-181b could suppress inflammatory response by regulating the PRKCD/AKT signaling pathway and promoting M2 polarization, which further promoting osteogenesis of hBMSC in vitro and Exo-181b could promote osteointegration in vivo.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Wei Liu ◽  
Muyu Yu ◽  
Feng Chen ◽  
Longqing Wang ◽  
Cheng Ye ◽  
...  

Abstract Background Many patients suffer from implant loosening after the implantation of titanium alloy caused by immune response to the foreign bodies and this could inhibit the following osteogenesis, which could possibly give rise to aseptic loosening and poor osteointegration while there is currently no appropriate solution in clinical practice. Exosome (Exo) carrying miRNA has been proven to be a suitable nanocarrier for solving this problem. In this study, we explored whether exosomes overexpressing miR-181b (Exo-181b) could exert beneficial effect on promoting M2 macrophage polarization, thus inhibiting inflammation as well as promoting osteogenesis and elaborated the underlying mechanism in vitro. Furthermore, we aimed to find whether Exo-181b could enhance osteointegration. Results In vitro, we firstly verified that Exo-181b significantly enhanced M2 polarization and inhibited inflammation by suppressing PRKCD and activating p-AKT. Then, in vivo, we verified that Exo-181b enhanced M2 polarization, reduced the inflammatory response and enhanced osteointegration. Also, we verified that the enhanced M2 polarization could indirectly promote the migration and osteogenic differentiation by secreting VEGF and BMP-2 in vitro. Conclusions Exo-181b could suppress inflammatory response by promoting M2 polarization via activating PRKCD/AKT signaling pathway, which further promoting osteogenesis in vitro and promote osteointegration in vivo. Graphic abstract


2016 ◽  
Vol 36 (4) ◽  
Author(s):  
Yan Zhong ◽  
Chun Yi

Macrophages are highly plastic cells with the ability to differentiate into both M1- and M2-polarized phenotypes. As a distinct M2-polarized population, tumour-associated macrophages (TAMs) promote tumorigenesis owing to their pro-angiogenic and immune-suppressive functions in tumour microenvironment. In the present study, we found that the microRNA-720 (miR-720) was down-regulated in TAMs isolated from breast carcinomas and M2-polarization macrophages. Overexpression of miR-720 attenuated M2 phenotype expression and thus inhibited M2 polarization. We further identified GATA binding protein 3 (GATA3), a transcriptional factor that plays an important role in M2 macrophage polarization, was the downstream target of miR-720. Ectopic expression of GATA3 restored the M2 phenotype in miR-720 overexpressed macrophages. Importantly, overexpression of miR-720 inhibited pro-migration behaviour and phagocytic ability of M2-polarized macrophages. Thus, our data suggest that miR-720 plays an important role in regulating M2 macrophage polarization and function.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Dafeng Xu ◽  
Yu Wang ◽  
Jincai Wu ◽  
Zhensheng Zhang ◽  
Jiacheng Chen ◽  
...  

AbstractHepatocellular carcinoma (HCC) is a common high-mortality cancer, mainly due to diagnostic difficulties during its early clinical stages. In this study, we aimed to identify genes that are important for HCC diagnosis and treatment, and we investigated the underlying mechanism of prognostic differences. Differentially expressed genes (DEGs) were identified by using the limma package, and receiver operating characteristic curve analysis was performed to identify diagnostic markers for HCC. Bioinformatics and clinical specimens were used to assess epithelial cell transforming 2 (ECT2) in terms of expression, prognostic value, pathways, and immune correlations. In vitro experiments were used to investigate the underlying mechanism and function of ECT2, and the results were confirmed through in vivo experiments. The integrated analysis revealed 53 upregulated DEGs, and one candidate biomarker for diagnosis (ECT2) was detected. High expression of ECT2 was found to be an independent prognostic risk factor for HCC. ECT2 expression showed a strong correlation with tumor-associated macrophages. We found that ECT2 overexpression increased the migration and proliferation of HCC cells. It also promoted the expression of PLK1, which subsequently interacted with PTEN and interfered with its nuclear translocation, ultimately enhancing aerobic glycolysis and promoting M2 macrophage polarization. M2 macrophages suppress the functions of NK cells and T cells, and this was confirmed in the in vivo experiments. Overall, ECT2 may promote the polarization of M2 macrophages by enhancing aerobic glycolysis and suppressing the functions of immune cells. ECT2 could serve as a candidate diagnostic and prognostic biomarker for HCC.


2018 ◽  
Vol 115 (42) ◽  
pp. 10648-10653 ◽  
Author(s):  
Theresa M. Raimondo ◽  
David J. Mooney

Persistence of inflammation, and associated limits in tissue regeneration, are believed to be due in part to the imbalance of M1 over M2 macrophages. Here, we hypothesized that providing a sustained source of an antiinflammatory polarizing cytokine would shift the balance of macrophages at a site of tissue damage to improve functional regeneration. Specifically, IL-4–conjugated gold nanoparticles (PA4) were injected into injured murine skeletal muscle, resulting in improved histology and an ∼40% increase in muscle force compared with mice treated with vehicle only. Macrophages were the predominant infiltrating immune cell, and treatment with PA4 resulted in an approximately twofold increase in the percentage of macrophages expressing the M2a phenotype and an approximately twofold decrease in M1 macrophages, compared with mice treated with vehicle only. Intramuscular injection of soluble IL-4 did not shift macrophage polarization or result in functional muscle improvements. Depletion of monocytes/macrophages eliminated the therapeutic effects of PA4, suggesting that improvement in muscle function was the result of M2-shifted macrophage polarization. The ability of PA4 to direct macrophage polarization in vivo may be beneficial in the treatment of many injuries and inflammatory diseases.


2020 ◽  
Author(s):  
fan su ◽  
Guobao Wang ◽  
Tie Li ◽  
Wendong Xu

Abstract Background: Our previous trial of contralateral seventh cervical nerve transfer (CC7) for spastic arm paralysis suggested that regeneration of the C7 nerve seems to be faster in patients undergoing nerve transfer due to cerebral injury compared to patients receiving surgery due to brachial plexus injury (BPI). This finding needs to be further verified, and the underlying mechanism remains largely unknown. The present study compared C7 regeneration between two groups of patients and animal models. Proteomics was utilized to reveal the mechanism mediating the promotion of C7 nerve regeneration.Methods: We assessed Tinel’s sign in the arm after C7 transfer and compared the latency to the appearance of Tinel’s sign to evaluate regeneration. Traumatic brain injury (TBI) and BPI were induced in C57 mice to establish injury models. C7 regeneration was assessed by electrophysiology and histology. Enrichment analysis of the differentially expressed proteins identified by proteomics suggested altered inflammation related to TBI. qPCR and histology were performed to assess the inflammatory environment in the C7 nerve. We evaluated the influence of the contributing factor serum amyloid protein A1 (SAA1) on the regenerative ability and inflammatory response of the C7 nerve by electrophysiology, qPCR and histology.Results: Faster C7 regeneration was identified in patients, which was further confirmed in mouse models by electrophysiological recordings and histology. Altered systemic inflammation, which led to increased M2 macrophage activation, may represent an underlying mechanism of increased regeneration. In mice, SAA1 facilitated C7 regeneration and interfered with macrophage polarization in vivo.Conclusions: Altered inflammation promoted the regenerative capacity of the C7 nerve by altering macrophage behavior, and SAA1 may be a therapeutic target to improve the recovery of injured peripheral nerves.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 868
Author(s):  
Fabiana Albani Zambuzi ◽  
Priscilla Mariane Cardoso-Silva ◽  
Ricardo Cardoso Castro ◽  
Caroline Fontanari ◽  
Flavio da Silva Emery ◽  
...  

Decitabine is an approved hypomethylating agent used for treating hematological malignancies. Although decitabine targets altered cells, epidrugs can trigger immunomodulatory effects, reinforcing the hypothesis of immunoregulation in treated patients. We therefore aimed to evaluate the impact of decitabine treatment on the phenotype and functions of monocytes and macrophages, which are pivotal cells of the innate immunity system. In vitro decitabine administration increased bacterial phagocytosis and IL-8 release, but impaired microbicidal activity of monocytes. In addition, during monocyte-to-macrophage differentiation, treatment promoted the M2-like profile, with increased expression of CD206 and ALOX15. Macrophages also demonstrated reduced infection control when exposed to Mycobacterium tuberculosis in vitro. However, cytokine production remained unchanged, indicating an atypical M2 macrophage. Furthermore, when macrophages were cocultured with lymphocytes, decitabine induced a reduction in the release of inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ, maintaining IL-10 production, suggesting that decitabine could potentialize M2 polarization and might be considered as a therapeutic against the exacerbated immune response.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Theodora Katopodi ◽  
Savvas Petanidis ◽  
Kalliopi Domvri ◽  
Paul Zarogoulidis ◽  
Doxakis Anestakis ◽  
...  

AbstractIntratumoral heterogeneity in lung cancer is essential for evasion of immune surveillance by tumor cells and establishment of immunosuppression. Gathering data reveal that circular RNAs (circRNAs), play a role in the pathogenesis and progression of lung cancer. Particularly Kras-driven circRNA signaling triggers infiltration of myeloid-associated tumor macrophages in lung tumor microenvironment thus establishing immune deregulation, and immunosuppression but the exact pathogenic mechanism is still unknown. In this study, we investigate the role of oncogenic Kras signaling in circRNA-related immunosuppression and its involvement in tumoral chemoresistance. The expression pattern of circRNAs HIPK3 and PTK2 was determined using quantitative polymerase chain reaction (qPCR) in lung cancer patient samples and cell lines. Apoptosis was analyzed by Annexin V/PI staining and FACS detection. M2 macrophage polarization and MDSC subset analysis (Gr1−/CD11b−, Gr1−/CD11b+) were determined by flow cytometry. Tumor growth and metastatic potential were determined in vivo in C57BL/6 mice. Findings reveal intra-epithelial CD163+/CD206+ M2 macrophages to drive Kras immunosuppressive chemoresistance through myeloid differentiation. In particular, monocytic MDSC subsets Gr1−/CD11b−, Gr1−/CD11b+ triggered an M2-dependent immune response, creating an immunosuppressive tumor-promoting network via circHIPK3/PTK2 enrichment. Specifically, upregulation of exosomal cicHIPK3/PTK2 expression prompted Kras-driven intratumoral heterogeneity and guided lymph node metastasis in C57BL/6 mice. Consequent co-inhibition of circPTK2/M2 macrophage signaling suppressed lung tumor growth along with metastatic potential and prolonged survival in vivo. Taken together, these results demonstrate the key role of myeloid-associated macrophages in sustaining lung immunosuppressive neoplasia through circRNA regulation and represent a potential therapeutic target for clinical intervention in metastatic lung cancer.


Oncotarget ◽  
2015 ◽  
Vol 6 (38) ◽  
pp. 41398-41398 ◽  
Author(s):  
Han-Ching Tseng ◽  
Keiichi Kanayama ◽  
Kawaljit Kaur ◽  
So-Hyun Park ◽  
Sil Park ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1205
Author(s):  
Christopher Ludtka ◽  
Erika Moore ◽  
Josephine B. Allen

The effects of spaceflight, including prolonged exposure to microgravity, can have significant effects on the immune system and human health. Altered immune cell function can lead to adverse health events, though precisely how and to what extent a microgravity environment impacts these cells remains uncertain. Macrophages, a key immune cell, effect the inflammatory response as well as tissue remodeling and repair. Specifically, macrophage function can be dictated by phenotype that can exist between spectrums of M0 macrophage: the classically activated, pro-inflammatory M1, and the alternatively activated, pro-healing M2 phenotypes. This work assesses the effects of simulated microgravity via clinorotation on M0, M1, and M2 macrophage phenotypes. We focus on phenotypic, inflammatory, and angiogenic gene and protein expression. Our results show that across all three phenotypes, microgravity results in a decrease in TNF-α expression and an increase in IL-12 and VEGF expression. IL-10 was also significantly increased in M1 and M2, but not M0 macrophages. The phenotypic cytokine expression profiles observed may be related to specific gravisensitive signal transduction pathways previously implicated in microgravity regulation of macrophage gene and protein expression. Our results highlight the far-reaching effects that simulated microgravity has on macrophage function and provides insight into macrophage phenotypic function in microgravity.


Sign in / Sign up

Export Citation Format

Share Document