scholarly journals Combined Scutellarin and C18H17NO6 Imperils the Survival of Glioma: Partly Associated With the Repression of PSEN1/PI3K-AKT Signaling Axis

2021 ◽  
Vol 11 ◽  
Author(s):  
Xiu-Ying He ◽  
Yang Xu ◽  
Qing-Jie Xia ◽  
Xiao-Ming Zhao ◽  
Shan Li ◽  
...  

Glioma, the most common intracranial tumor, harbors great harm. Since the treatment for it has reached the bottleneck stage, the development of new drugs becomes a trend. Therefore, we focus on the effect of scutellarin (SCU) and its combination with C18H17NO6 (abbreviated as combination) on glioma and its possible mechanism in this study. Firstly, SCU and C18H17NO6 both suppressed the proliferation of U251 and LN229 cells in a dose-dependent manner, and C18H17NO6 augmented the inhibition effect of SCU on U251 and LN229 cells in vitro. Moreover, there was an interactive effect between them. Secondly, SCU and C18H17NO6 decreased U251 cells in G2 phase and LN229 cells in G2 and S phases but increased U251 cells in S phase, respectively. Meanwhile, the combination could further reduce U251 cells in G2 phase and LN229 cells in G2 and S phases. Thirdly, SCU and C18H17NO6 both induced the apoptosis of U251 and LN229. The combination further increased the apoptosis rate of both cells compared with the two drugs alone. Furthermore, SCU and C18H17NO6 both inhibited the lateral and vertical migration of both cells, which was further repressed by the combination. More importantly, the effect of SCU and the combination was better than positive control-temozolomide, and the toxicity was low. Additionally, SCU and C18H17NO6 could suppress the growth of glioma in vivo, and the effect of the combination was better. Finally, SCU and the combination upregulated the presenilin 1 (PSEN1) level but inactivated the phosphatidylinositol 3−kinase (PI3K)-protein kinase B (AKT) signaling in vitro and in vivo. Accordingly, we concluded that scutellarin and its combination with C18H17NO6 suppressed the proliferation/growth and migration and induced the apoptosis of glioma, in which the mechanism might be associated with the repression of PSEN1/PI3K-AKT signaling axis.

Author(s):  
Pingping Jia ◽  
Yi Zhang ◽  
Jian Xu ◽  
Mei Zhu ◽  
Shize Peng ◽  
...  

Abstract Background Resistance to anti-tuberculosis (TB) drug is a major issue in TB control, and demands the discovery of new drugs targeting virulence factor ESX-1. Methods We first established a high-throughput screen (HTS) assay for the discovery of ESX-1 secretion inhibitors. The positive hits were then evaluated for the potency of diminishing the survival of virulent mycobacterium and reducing bacterial virulence. We further investigated the probability of inducing drug-resistance and the underlying mechanism using M-PFC. Results A robust HTS assay was developed to identify small molecules that inhibit ESX-1 secretion without impairing bacterial growth in vitro. A hit named IMB-BZ specifically inhibits the secretion of CFP-10 and reduces virulence in an ESX-1-dependent manner, therefore resulting in significant reduction in intracellular and in vivo survival of mycobacteria. Blocking the CFP-10-EccCb1 interaction directly or indirectly underlies the inhibitory effect of IMB-BZ on the secretion of CFP-10. Importantly, our finding shows that the ESX-1 inhibitors pose low risk of drug resistance development by mycobacteria in vitro as compared with traditional anti-TB drug, and exhibit high potency against chronic mycobacterial infection. Conclusion Targeting ESX-1 may lead to the development of novel therapeutics for tuberculosis. IMB-BZ holds the potential for future development into a new anti-TB drug.


Author(s):  
Jili Zhang ◽  
Hongfei Si ◽  
Kun Lv ◽  
Yanhua Qiu ◽  
Jichao Sun ◽  
...  

Toxoplasma gondii is an obligate intracellular pathogen that infects warm-blooded animals and humans. However, side effects limit toxoplasmosis treatment, and new drugs with high efficiency and low toxicity need to be developed. Natural products found in plants have become a useful source of drugs for toxoplasmosis. In this study, twenty natural compounds were screened for anti-T. gondii activity by Giemsa staining or real-time fluorescence quantitative polymerase chain reaction (qPCR) in vitro. Among these, licarin-B from nutmeg exhibited excellent anti-T. gondii activity, inhibiting T. gondii invasion and proliferation in a dose-dependent manner, with an EC50 of 14.05 ± 3.96 μg/mL. In the in vivo, licarin-B treatment significantly reduced the parasite burden in tissues compared to no treatment, protected the 90% infected mice from to death at 50 mg/kg.bw. Flow cytometry analysis suggested a significant reduction in T. gondii survival after licarin-B treatment. Ultrastructural changes in T. gondii were observed by transmission electron microscopy (TEM), as licarin-B induced mitochondrial swelling and formation of cytoplasmic vacuoles, an autophagosome-like double-membrane structure and extensive clefts around the T. gondii nucleus. Furthermore, MitoTracker Red CMXRos, MDC, and DAPI staining showed that licarin-B promoted mitochondrial damage, autophagosome formation, and nuclear disintegration, which were consistent with the TEM observations. Together, these findings indicate that licarin-B is a promising anti-T. gondii agent that potentially functions by damaging mitochondria and activating autophagy, leading to T. gondii death.


Oncogenesis ◽  
2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Yang Sun ◽  
Chen Ye ◽  
Wen Tian ◽  
Wen Ye ◽  
Yuan-Yuan Gao ◽  
...  

AbstractTransient receptor potential canonical (TRPC) channels are the most prominent nonselective cation channels involved in various diseases. However, the function, clinical significance, and molecular mechanism of TRPCs in colorectal cancer (CRC) progression remain unclear. In this study, we identified that TRPC1 was the major variant gene of the TRPC family in CRC patients. TRPC1 was upregulated in CRC tissues compared with adjacent normal tissues and high expression of TRPC1 was associated with more aggressive tumor progression and poor overall survival. TRPC1 knockdown inhibited cell proliferation, cell-cycle progression, invasion, and migration in vitro, as well as tumor growth in vivo; whereas TRPC1 overexpression promoted colorectal tumor growth and metastasis in vitro and in vivo. In addition, colorectal tumorigenesis was significantly attenuated in Trpc1-/- mice. Mechanistically, TRPC1 could enhance the interaction between calmodulin (CaM) and the PI3K p85 subunit by directly binding to CaM, which further activated the PI3K/AKT and its downstream signaling molecules implicated in cell cycle progression and epithelial-mesenchymal transition. Silencing of CaM attenuated the oncogenic effects of TRPC1. Taken together, these results provide evidence that TRPC1 plays a pivotal oncogenic role in colorectal tumorigenesis and tumor progression by activating CaM-mediated PI3K/AKT signaling axis. Targeting TRPC1 represents a novel and specific approach for CRC treatment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2833-2833
Author(s):  
Amanda Przespolewski ◽  
Scott Portwood ◽  
Jason Den Haese ◽  
Demi Lewis ◽  
Eunice S. Wang

Abstract Background: Successful immunotherapeutic approaches for acute myeloid leukemia (AML) have yet to be developed. We hypothesized that targeting both the innate and adaptive immune responses in leukemic hosts would elicit significant anti-tumor activity with lesser toxicities than chemotherapy. To test this, we evaluated the efficacy of immune checkpoint inhibition (murine anti-PD-1 antibody (ab)) alone and in combination with 5,6-dimethylxanthenone-4-acetic acid (DMXAA), an innate immune agonist and anti-vascular agent, in an immunocompetent model of murine AML. Methods: Expression of PD-L1 was assessed by flow cytometry on the murine AML cell line, C1498, alone and following treatment with vehicle, DMXAA or interferon-gamma (positive control). A LEGEND MAX mouse ELISA kit was utilized to measure IL-6 and IFN-β. C57BL/6 mice were inoculated with stably transfected C1498 murine AML cells expressing luciferase and the fluorescent protein DSRed2. Once disease was established, animals were treated with vehicle, DMXAA (20 mg/kg every four days x 7 weeks), anti-murine PD-1 antibody (10 mg/kg every 3 days x 4 doses) or DMXAA + anti-PD-1 antibody (same doses). Animals underwent weekly clinical assessments, weights, and bioluminescent imaging for disease burden. Overall study endpoints were time to morbidity and differences in leukemia disease burden as compared with vehicle-treated controls. Mice were euthanized on day 15 after injection of C1498 cells (8 days following treatment) for collection of plasma, bone marrow, liver and spleen samples for tumor burden, activated T-cells. Results: DMXAA doses (ranging from 1-100 μg/ml) inhibited C1498 in vitro cell growth at 48 hours (48h) in a dose dependent manner. Treatment of C1498 cells in culture with escalating doses of DMXAA (1-100μg/ml) or IFN-gamma (positive control) induced higher PD-L1 expression on these AML cells consistent with direct immunomodulatory effects. Furthermore, C1498 cells exposed to higher doses of DMXAA (10-100μg/ml) for 48h produced measurably higher levels of IL-6 and IFN-β expression in cell supernatants. We then examined the effects of DMXAA, anti-PD-1 ab, or the combination of DMXAA + anti-PD-1 ab treatment in vivo in C57BL/6 mice systemically engrafted with C1498-luciferase AML cells. Treatment overall was well tolerated and resulted in significantly decreased disease burden as measured by total body bioluminescence vs. vehicle controls (p<0.05). Median time to morbidity was significantly decreased in all treatment arms as compared with controls: vehicle = 28 days, DMXAA = 32 days, anti-PD-1 ab = 39 days, and combination DMXAA + anti-PD-1 ab = 53 days (p<0.05). Combination therapy resulted in significantly longer overall survival than single agent therapy (DMXAA vs. DMXAA+anti-PD-1 ab, p=0.032; anti-PD1 ab vs. DMXAA+antii-PD-1 ab p=0.038)(n=total 13-16 mice per group) (representative data shown in Figure 1). Therapy with DMXAA alone and in combination with anti-PD-1 ab was associated with markedly higher PD-1, PD-L1, and PD-L2 expression levels in bone marrow cells harvested from leukemic mice 48h after treatment. Significantly higher numbers of activated T cells were also identified in the bone marrow and spleen of leukemic mice following two weeks of DMXAA therapy alone or in combination with anti-PD-1 ab. Additional in vivo measurements of systemic cytokine levels following therapy are underway. Conclusions: Here we demonstrate that the combination of an innate immune agonist (DMXAA) with an immune checkpoint inhibitor (anti-PD-1 ab) improved anti-leukemic effects in a preclinical AML model. In vitro DMXAA therapy inhibited murine AML growth in a dose dependent manner, enhanced PD-L1 expression, and induced leukemic production of cytokines (IL-6, IFN-β). In vivo combination DMXAA and anti-PD-1 ab therapy in an immunocompetent murine AML model increased activated host T cell numbers and marrow PD-1/L1/L2 expression in conjunction with decreased tumor burden and prolonged overall survival. These studies may pave the way for future clinical trials evaluating this novel immunomodulatory strategy in AML patients. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 10 (9) ◽  
pp. 6009-6019 ◽  
Author(s):  
Yun Yu ◽  
Xiu-Yuan Lang ◽  
Xi-Xi Li ◽  
Run-Ze Gu ◽  
Qing-Shan Liu ◽  
...  

2,3,5,4′-Tetrahydroxystilbene-2-O-β-d-glucoside (THSG) affords neuroprotective effects against MPP+-induced neurotoxicityin vitroandin vivoby restoring the BDNF-TrkB and FGF2-Akt signaling axis to inhibit apoptosis and promote cell survival.


2021 ◽  
Vol 11 (2) ◽  
pp. 272
Author(s):  
Eva Martínez-Pinilla ◽  
Núria Rubio-Sardón ◽  
Sandra Villar-Conde ◽  
Gemma Navarro ◽  
Eva del Valle ◽  
...  

Suitable in vivo and in vitro models are instrumental for the development of new drugs aimed at improving symptoms or progression of multiple sclerosis (MS). The cuprizone (CPZ)-induced murine model has gained momentum in recent decades, aiming to address the demyelination component of the disease. This work aims at assessing the differential cytotoxicity of CPZ in cells of different types and from different species: human oligodendroglial (HOG), human neuroblastoma (SH-SY5Y), human glioblastoma (T-98), and mouse microglial (N-9) cell lines. Moreover, the effect of CPZ was investigated in primary rat brain cells. Cell viability was assayed by oxygen rate consumption and by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-based (MTT) method. Our results demonstrated that CPZ did not cause death in any of the assayed cell models but affected mitochondrial function and aerobic cell respiration, thus compromising cell metabolism in neural cells and neuron-glia co-cultures. In this sense, we found differential vulnerability between glial cells and neurons as is the case of the CPZ-induced mouse model of MS. In addition, our findings demonstrated that reduced viability was spontaneous reverted in a time-dependent manner by treatment discontinuation. This reversible cell-based model may help to further investigate the role of mitochondria in the disease, and study the molecular intricacies underlying the pathophysiology of the MS and other demyelinating diseases.


2018 ◽  
Vol 45 (4) ◽  
pp. 1472-1486 ◽  
Author(s):  
Tangjun Zhou ◽  
Lin Du ◽  
Chen Chen ◽  
Chen Han ◽  
Xunlin Li ◽  
...  

Background/Aims: Hypertrophic ligamentum flavum (LF) is a major cause of lumbar spinal stenosis. Our previous work showed that high levels of lysophosphatidic acid (LPA) expression are positively correlated with LF hypertrophy. This study aimed to further unveil how LPA regulates LF hypertrophy Methods: We studied LPAR1 expression in human LF cells using PCR and western blotting. Cell viability cell cycle, apoptosis rate and molecular mechanisms were assayed in LPAR1 knockdown or overexpression LF cells. LF hypertrophy and the molecular mechanism was confirmed in human samples and in in vivo studies. Results: The expression of LPA and its receptor LPAR1 is significantly higher in tissues or cells harvested from hypertrophic LF compared to healthy controls. Moreover, LPA promoted LF cell proliferation by interacting with LPAR1. This conclusion is supported by the fact that depletion or overexpression of LPAR1 changed the effect of LPA on LF cell proliferation. LPA also inhibits apoptosis in LF cells through the receptor LPAR1. Importantly, we demonstrated that the LPA-LPAR1 interaction initiated Akt phosphorylation and determined cell proliferation and apoptosis. Our in vitro findings were supported by our in vivo evidence that lyophilized LPA significantly induced LF hypertrophy via the LPAR1-Akt signaling pathway. More importantly, targeted inhibition of LPAR1 by Ki16425 with a gel sponge implant effectively reduced LPA-associated LF hypertrophy. Taken together, these data indicate that LPA binds to the receptor LPAR1 to induce LF cell proliferation and inhibit apoptosis by activating AKT signaling cascades. Targeting this signaling cascade with Ki16425 is a potential therapeutic strategy for preventing LF hypertrophy. Conclusion: LPA-LPAR1-Akt activation is positively correlated with the proliferation and survival of LF cells. LPAR1 could be a target for new drugs and the development of new therapeutic methods for treating LF hypertrophy.


Author(s):  
Cheng-Lin Qi ◽  
Mao-Ling Huang ◽  
You Zou ◽  
Rui Yang ◽  
Yang Jiang ◽  
...  

Abstract Background Centromere protein N (CENP-N) has been reported to be highly expressed in malignancies, but its role and mechanism in nasopharyngeal carcinoma (NPC) are unknown. Methods Abnormal CENP-N expression from NPC microarrays of GEO database was analyzed. CENP-N expression level was confirmed in NPC tissues and cell lines. Stable CENP-N knockdown and overexpression NPC cell lines were established, and transcriptome sequencing after CENP-N knockdown was performed. In vitro and in vivo experiments were performed to test the impact of CENP-N knockdown in NPC cells. ChIP and dual luciferase reporter assays were used to verify the combination of IRF2 and CENP-N. Western blot analysis, cellular immunofluorescence, immunoprecipitation and GST pulldown assays were used to verify the combination of CENP-N and AKT. Results CENP-N was confirmed to be aberrantly highly expressed in NPC tissues and cell lines and to be associated with high 18F-FDG uptake in cancer nests and poor patient prognosis. Transcriptome sequencing after CENP-N knockdown revealed that genes with altered expression were enriched in pathways related to glucose metabolism, cell cycle regulation. CENP-N knockdown inhibited glucose metabolism, cell proliferation, cell cycling and promoted apoptosis. IRF2 is a transcription factor for CENP-N and directly promotes CENP-N expression in NPC cells. CENP-N affects the glucose metabolism, proliferation, cell cycling and apoptosis of NPC cells in vitro and in vivo through the AKT pathway. CENP-N formed a complex with AKT in NPC cells. Both an AKT inhibitor (MK-2206) and a LDHA inhibitor (GSK2837808A) blocked the effect of CENP-N overexpression on NPC cells by promoting aerobic glycolysis, proliferation, cell cycling and apoptosis resistance. Conclusions The IRF2/CENP-N/AKT axis promotes malignant biological behaviors in NPC cells by increasing aerobic glycolysis, and the IRF2/CENP-N/AKT signaling axis is expected to be a new target for NPC therapy.


2020 ◽  
Author(s):  
Serdar Durdagi

<p>Currently, the world suffers from a new coronavirus SARS-CoV-2 that causes COVID-19. Therefore, there is a need for the urgent development of novel drugs and vaccines for COVID-19. Since it can take years to develop new drugs against this disease, here we used a hybrid combined molecular modeling approach in virtual drug screening repurposing study to identify new compounds against this disease. One of the important SARS-CoV-2 targets namely type 2 transmembrane serine protease (TMPRSS2) was screened with NPC’s NIH small molecule library which includes approved drugs by FDA and compounds in clinical investigation. We used 6654 small molecules in molecular docking and top-50 docking scored compounds were initially used in short (10-ns) molecular dynamics (MD) simulations. Based on average MM/GBSA binding free energy results, long (100-ns) MD simulations were employed for the identified hits. Both binding energy results as well as crucial residues in ligand binding were also compared with a positive control TMPRSS2 inhibitor, Camostat mesylate. Based on these numerical calculations we proposed a compound (benzquercin) as strong TMPRSS2 inhibitor. If these results can be validated by in vitro and in vivo studies, benzquercin can be considered to be used as inhibitor of TMPRSS2 at the clinical studies.</p>


2012 ◽  
Vol 20 ◽  
pp. 89-97 ◽  
Author(s):  
Bartira Rossi-Bergmann ◽  
Wallace Pacienza-Lima ◽  
Priscyla D. Marcato ◽  
Roseli de Conti ◽  
Nelson Durán

Many efforts in these last years have dedicated in the development of new drugs due to an increase of microbial organisms resistant to multiple antibiotics, and silver nanoparticles appears as a novel antimicrobial agent. The aim of our work was to evaluate the in vitro and in vivo antileishmanial activity of the silver nanoparticles prepared by chemical process and by biosynthesis from Fusarium oxysporum. In vitro antipromastigote activity of L. amazonensis showed that silver nanoparticles chemically synthesized (AgCHEM), biogenic silver nanoparticles (AgBIO) and amphotericin B decreased the parasite load up to 13%, 61%, and 68%, respectively. The IC50 of AgCHEM and AgBIO was 103.5 ± 11.5 μM and 31.6 ± 8.2 μM respectively. The assay of antileishmanial effect of these nanoparticles was evaluated in vivo (BALB/c mice) against L. amazonensis. The mice infected with promastigotes of L. amazonensis in the ear showed that after 10 days of treatment (twice a week for four weeks) the wound in the control (mice treated with PBS solution) was large, while the wound of the mice treated with amphotericin B (positive control) exhibited low size of lesion. The same parasitemia inhibition with amphotericin B was observed when AgBIO were used at 300 fold lower concentration, and 100 fold less concentration of AgCHEM than amphotericin B. Thus, these nanoparticles can be used in wound helping like cutaneous leishmaniasis.


Sign in / Sign up

Export Citation Format

Share Document