scholarly journals The IRF2/CENP-N/AKT signaling axis promotes proliferation, cell cycling and apoptosis resistance in nasopharyngeal carcinoma cells by increasing aerobic glycolysis

Author(s):  
Cheng-Lin Qi ◽  
Mao-Ling Huang ◽  
You Zou ◽  
Rui Yang ◽  
Yang Jiang ◽  
...  

Abstract Background Centromere protein N (CENP-N) has been reported to be highly expressed in malignancies, but its role and mechanism in nasopharyngeal carcinoma (NPC) are unknown. Methods Abnormal CENP-N expression from NPC microarrays of GEO database was analyzed. CENP-N expression level was confirmed in NPC tissues and cell lines. Stable CENP-N knockdown and overexpression NPC cell lines were established, and transcriptome sequencing after CENP-N knockdown was performed. In vitro and in vivo experiments were performed to test the impact of CENP-N knockdown in NPC cells. ChIP and dual luciferase reporter assays were used to verify the combination of IRF2 and CENP-N. Western blot analysis, cellular immunofluorescence, immunoprecipitation and GST pulldown assays were used to verify the combination of CENP-N and AKT. Results CENP-N was confirmed to be aberrantly highly expressed in NPC tissues and cell lines and to be associated with high 18F-FDG uptake in cancer nests and poor patient prognosis. Transcriptome sequencing after CENP-N knockdown revealed that genes with altered expression were enriched in pathways related to glucose metabolism, cell cycle regulation. CENP-N knockdown inhibited glucose metabolism, cell proliferation, cell cycling and promoted apoptosis. IRF2 is a transcription factor for CENP-N and directly promotes CENP-N expression in NPC cells. CENP-N affects the glucose metabolism, proliferation, cell cycling and apoptosis of NPC cells in vitro and in vivo through the AKT pathway. CENP-N formed a complex with AKT in NPC cells. Both an AKT inhibitor (MK-2206) and a LDHA inhibitor (GSK2837808A) blocked the effect of CENP-N overexpression on NPC cells by promoting aerobic glycolysis, proliferation, cell cycling and apoptosis resistance. Conclusions The IRF2/CENP-N/AKT axis promotes malignant biological behaviors in NPC cells by increasing aerobic glycolysis, and the IRF2/CENP-N/AKT signaling axis is expected to be a new target for NPC therapy.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chao Hu ◽  
Xiaobin Zhu ◽  
Taogen Zhang ◽  
Zhouming Deng ◽  
Yuanlong Xie ◽  
...  

Introduction. Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods. Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results. The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion. Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.


Blood ◽  
2021 ◽  
Author(s):  
Roger Belizaire ◽  
Sebastian Hassan John Koochaki ◽  
Namrata D. Udeshi ◽  
Alexis Vedder ◽  
Lei Sun ◽  
...  

CBL encodes an E3 ubiquitin ligase and signaling adaptor that regulates receptor and non-receptor tyrosine kinases. Recurrent CBL mutations occur in myeloid neoplasms, including 10-20% of chronic myelomonocytic leukemia (CMML) cases, and selectively disrupt the protein's E3 ubiquitin ligase activity. CBL mutations have been associated with poor prognosis, but the oncogenic mechanisms and therapeutic implications of CBL mutations remain incompletely understood. We combined functional assays and global mass spectrometry to define the phosphoproteome, CBL interactome, and mechanism of signaling activation in a panel of cell lines expressing an allelic series of CBL mutations. Our analyses revealed that increased LYN activation and interaction with mutant CBL are key drivers of enhanced CBL phosphorylation, PIK3R1 recruitment, and downstream PI3K/AKT signaling in CBL-mutant cells. Signaling adaptor domains of CBL, including the tyrosine-kinase binding domain, proline-rich region, and C-terminal phosphotyrosine sites, were all required for the oncogenic function of CBL mutants. Genetic ablation or dasatinib-mediated inhibition of LYN reduced CBL phosphorylation, CBL-PIK3R1 interaction, and PI3K/AKT signaling. Furthermore, we demonstrated in vitro and in vivo antiproliferative efficacy of dasatinib in CBL-mutant cell lines and primary CMML. Overall, these mechanistic insights into the molecular function of CBL mutations provide rationale to explore the therapeutic potential of LYN inhibition in CBL-mutant myeloid malignancies.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 8582-8582
Author(s):  
Dharminder Chauhan ◽  
Arghya Ray ◽  
Christopher Brooks ◽  
Eric K. Rowinsky ◽  
Kenneth Carl Anderson

8582 Background: Multiple myeloma (MM) remains incurable despite novel therapies, highlighting the need for further identification of factors mediating disease progression and drug resistance. The bone marrow (BM) microenvironment confers growth, survival, and drug resistance in MM cells. Our recent study utilized in vitro and in vivo MM xenograft models to show that plasmacytoid dendritic cells (pDCs) were significantly increased in MM BM and promote MM growth (Chauhan et al., Cancer Cell 2009, 16:309). Importantly, we found increased IL-3 levels upon pDC-MM interaction, which in turn, trigger MM cell growth and pDCs survival. IL-3R is highly expressed on pDCs. We utilized SL-401, a novel biologic conjugate that targets IL-3R, to examine whether abrogation of IL-3–IL-3R signaling axis affects pDC-MM interaction and its tumor promoting sequelae. Methods: MM cell lines, patient MM cells, and pDCs from healthy donors or MM patients were utilized to study the anti-MM activity of SL-401. MM cells and pDCs were cultured alone or together in the presence or absence of SL-401, followed by analysis of cell growth or viability. Results: SL-401 significantly decreased the viability of pDCs at low concentrations (IC50: 0.83 ng/ml; P < 0.005, n = 3). SL-401 also decreased the viability of MM cells at clinically achievable doses. Co-culture of pDCs with MM cells induced growth of MM cell lines; and importantly, low doses (0.8 ng/ml) of SL-401 blocked MM cell growth-promoting activity of pDCs. MM patient-derived pDCs induced growth of MM cell lines and primary MM cells as well; conversely, SL-401 inhibited pDC-triggered MM cell growth (P < 0.005, n= 5). Tumor cells from 3 of the 5 patients were from patients whose disease was progressing while on bortezomib, dexamethasone, and lenalidomide therapies. In agreement with these results, SL-401 blocked pDC-induced growth of dexamethasone-resistant MM cell lines. Conclusions: Our study therefore provides the basis for directly targeting pDCs or blocking the pDC-MM interaction, as well as targeting MM, in novel therapeutic strategies with SL-401 to enhance MM cytotoxicity, overcome drug-resistance, and improve patient outcome.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Victor J Hernandez ◽  
Jian Weng ◽  
Peter Ly ◽  
Shanica Pompey ◽  
Hongyun Dong ◽  
...  

Cavin-3 is a tumor suppressor protein of unknown function. Using both in vivo and in vitro approaches, we show that cavin-3 dictates the balance between ERK and Akt signaling. Loss of cavin-3 increases Akt signaling at the expense of ERK, while gain of cavin-3 increases ERK signaling at the expense Akt. Cavin-3 facilitates signal transduction to ERK by anchoring caveolae to the membrane skeleton of the plasma membrane via myosin-1c. Caveolae are lipid raft specializations that contain an ERK activation module and loss of the cavin-3 linkage reduces the abundance of caveolae, thereby separating this ERK activation module from signaling receptors. Loss of cavin-3 promotes Akt signaling through suppression of EGR1 and PTEN. The in vitro consequences of the loss of cavin-3 include induction of Warburg metabolism (aerobic glycolysis), accelerated cell proliferation, and resistance to apoptosis. The in vivo consequences of cavin-3 knockout are increased lactate production and cachexia.


2021 ◽  
Vol 22 (19) ◽  
pp. 10247
Author(s):  
Hao-Yu Chuang ◽  
Li-Yun Hsu ◽  
Chih-Ming Pan ◽  
Narpati Wesa Pikatan ◽  
Vijesh Kumar Yadav ◽  
...  

Background: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. It is highly resistant to chemotherapy, and tumor recurrence is common. Neuronal precursor cell-expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ligase that controls embryonic development and animal growth. NEDD4-1 regulates the tumor suppressor phosphatase and tensin homolog (PTEN), one of the major regulators of the PI3K/AKT/mTOR signaling axis, as well as the response to oxidative stress. Methods: The expression levels of NEDD4-1 in GBM tissues and different cell lines were determined by quantitative real-time polymerase chain reaction and immunohistochemistry. In vitro and in vivo assays were performed to explore the biological effects of NEDD4-1 on GBM cells. Temozolomide (TMZ)-resistant U87MG and U251 cell lines were specifically established to determine NEDD4-1 upregulation and its effects on the tumorigenicity of GBM cells. Subsequently, miRNA expression in TMZ-resistant cell lines was investigated to determine the dysregulated miRNA underlying the overexpression of NEDD4-1. Indole-3-carbinol (I3C) was used to inhibit NEDD4-1 activity, and its effect on chemoresistance to TMZ was verified. Results: NEDD4-1 was significantly overexpressed in the GBM and TMZ-resistant cells and clinical samples. NEDD4-1 was demonstrated to be a key oncoprotein associated with TMZ resistance, inducing oncogenicity and tumorigenesis of TMZ-resistant GBM cells compared with TMZ-responsive cells. Mechanistically, TMZ-resistant cells exhibited dysregulated expression of miR-3129-5p and miR-199b-3p, resulting in the induced NEDD4-1 mRNA-expression level. The upregulation of NEDD4-1 attenuated PTEN expression and promoted the AKT/NRF2/HO-1 oxidative stress signaling axis, which in turn conferred amplified defense against reactive oxygen species (ROS) and eventually higher resistance against TMZ treatment. The combination treatment of I3C, a known inhibitor of NEDD4-1, with TMZ resulted in a synergistic effect and re-sensitized TMZ-resistant tumor cells both in vitro and in vivo. Conclusions: These findings demonstrate the critical role of NEDD4-1 in regulating the redox imbalance in TMZ-resistant GBM cells via the degradation of PTEN and the upregulation of the AKT/NRF2/HO-1 signaling pathway. Targeting this regulatory axis may help eliminate TMZ-resistant glioblastoma.


Oncogenesis ◽  
2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Yang Sun ◽  
Chen Ye ◽  
Wen Tian ◽  
Wen Ye ◽  
Yuan-Yuan Gao ◽  
...  

AbstractTransient receptor potential canonical (TRPC) channels are the most prominent nonselective cation channels involved in various diseases. However, the function, clinical significance, and molecular mechanism of TRPCs in colorectal cancer (CRC) progression remain unclear. In this study, we identified that TRPC1 was the major variant gene of the TRPC family in CRC patients. TRPC1 was upregulated in CRC tissues compared with adjacent normal tissues and high expression of TRPC1 was associated with more aggressive tumor progression and poor overall survival. TRPC1 knockdown inhibited cell proliferation, cell-cycle progression, invasion, and migration in vitro, as well as tumor growth in vivo; whereas TRPC1 overexpression promoted colorectal tumor growth and metastasis in vitro and in vivo. In addition, colorectal tumorigenesis was significantly attenuated in Trpc1-/- mice. Mechanistically, TRPC1 could enhance the interaction between calmodulin (CaM) and the PI3K p85 subunit by directly binding to CaM, which further activated the PI3K/AKT and its downstream signaling molecules implicated in cell cycle progression and epithelial-mesenchymal transition. Silencing of CaM attenuated the oncogenic effects of TRPC1. Taken together, these results provide evidence that TRPC1 plays a pivotal oncogenic role in colorectal tumorigenesis and tumor progression by activating CaM-mediated PI3K/AKT signaling axis. Targeting TRPC1 represents a novel and specific approach for CRC treatment.


2015 ◽  
Vol 33 (3_suppl) ◽  
pp. 289-289 ◽  
Author(s):  
Emily Pace ◽  
Sharlene Adams ◽  
Adam Camblin ◽  
Michael Curley ◽  
Victoria Rimkunas ◽  
...  

289 Background: Gemcitabine, the first-line treatment for pancreatic cancer, has been improved by addition of nab-paclitaxel. However, patient response to this regimen is limited. Oncogenic insulin-like growth factor 1 (IGF-1) and heregulin (HRG) signaling are associated with increased cancer risk and decreased response to anti-metabolites and taxanes. Therefore, we explored MM-141, a novel bispecific antibody that blocks ErbB3 and IGF-1 receptor (IGF-1R) signaling, in combination with nab-paclitaxel and gemcitabine in preclinical models of pancreatic cancer. Methods: Combinations with MM-141, gemcitabine, and nab-paclitaxel were investigated in pancreatic cancer cell lines, in vitro and in vivo. The effects of MM-141, gemcitabine, and nab-paclitaxel on tumor growth and signaling were measured by 3D spheroid growth, ELISA, Western, and mouse xenograft experiments. Results: In vitro studies show that IGF-1 and HRG are potent activators of AKT signaling, leading to increased pancreatic tumor cell proliferation and decreased sensitivity to gemcitabine and nab-paclitaxel. MM-141 inhibits ligand-induced AKT activation, induces IGF-1R and ErbB3 degradation better than a mixture of IGF-1R and ErbB3 antibodies, and sensitizes cells to gemcitabine and nab-paclitaxel, in vitro. In vivo, MM-141 combines favorably with a nab-paclitaxel/gemcitabine regimen, leading to curative outcomes in a subset of treated mice. Conclusions: ErbB3 and IGF-1R co-inhibition is required to inhibit AKT signaling in pancreatic adenocarcinoma cell lines. These receptors are associated with chemoresistance to gemcitabine and nab-paclitaxel, which is abrogated by co-administration with MM-141. MM-141-induced degradation of oncogenic receptor complexes is likely essential to reverse chemoresistance and enhance effects of the nab-paclitaxel/gemcitabine regimen. These data, taken together with wide-spread expression of IGF-1R and ErbB3 in Stage IV pancreatic adenocarcinoma tissue, support clinical exploration of a MM-141/nab-paclitaxel/gemcitabine regimen in frontline metastatic pancreatic cancer. Preparations for a randomized Phase 2 study are underway.


2019 ◽  
Vol 10 (9) ◽  
pp. 6009-6019 ◽  
Author(s):  
Yun Yu ◽  
Xiu-Yuan Lang ◽  
Xi-Xi Li ◽  
Run-Ze Gu ◽  
Qing-Shan Liu ◽  
...  

2,3,5,4′-Tetrahydroxystilbene-2-O-β-d-glucoside (THSG) affords neuroprotective effects against MPP+-induced neurotoxicityin vitroandin vivoby restoring the BDNF-TrkB and FGF2-Akt signaling axis to inhibit apoptosis and promote cell survival.


2011 ◽  
Vol 55 (10) ◽  
pp. 4643-4651 ◽  
Author(s):  
Noa Tejman-Yarden ◽  
Maya Millman ◽  
Tineke Lauwaet ◽  
Barbara J. Davids ◽  
Frances D. Gillin ◽  
...  

ABSTRACTInfections with the diarrheagenic protozoan pathogenGiardia lambliaare most commonly treated with metronidazole (Mz). Treatment failures with Mz occur in 10 to 20% of cases and Mz resistance develops in the laboratory, yet clinically, Mz-resistant (Mzr)G. lambliahas rarely been isolated from patients. To understand why clinical Mzrisolates are rare, we questioned whether Mz resistance entails fitness costs to the parasite. Our studies employed several newly generated and established isogenic Mzrcell lines with stable, high-level resistance to Mz and significant cross-resistance to tinidazole, nitazoxanide, and furazolidone. Oral infection of suckling mice revealed that three of five Mzrcell lines could not establish infection, while two Mzrcell lines infected pups, albeit with reduced efficiencies. Failure to colonize resulted from a diminished capacity of the parasite to attach to the intestinal mucosain vivoand to epithelial cells and plastic surfacesin vitro. The attachment defect was related to impaired glucose metabolism, since the noninfectious Mzrlines consumed less glucose, and glucose promoted ATP-independent parasite attachment in the parental lines. Thus, resistance ofGiardiato Mz is accompanied by a glucose metabolism-related attachment defect that can interfere with colonization of the host. Because glucose-metabolizing pathways are important for activation of the prodrug Mz, it follows that a fitness trade-off exists between diminished Mz activation and reduced infectivity, which may explain the observed paucity of clinical Mzrisolates ofGiardia. However, the data also caution that some forms of Mz resistance do not markedly interfere within vivoinfectivity.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiu-Ying He ◽  
Yang Xu ◽  
Qing-Jie Xia ◽  
Xiao-Ming Zhao ◽  
Shan Li ◽  
...  

Glioma, the most common intracranial tumor, harbors great harm. Since the treatment for it has reached the bottleneck stage, the development of new drugs becomes a trend. Therefore, we focus on the effect of scutellarin (SCU) and its combination with C18H17NO6 (abbreviated as combination) on glioma and its possible mechanism in this study. Firstly, SCU and C18H17NO6 both suppressed the proliferation of U251 and LN229 cells in a dose-dependent manner, and C18H17NO6 augmented the inhibition effect of SCU on U251 and LN229 cells in vitro. Moreover, there was an interactive effect between them. Secondly, SCU and C18H17NO6 decreased U251 cells in G2 phase and LN229 cells in G2 and S phases but increased U251 cells in S phase, respectively. Meanwhile, the combination could further reduce U251 cells in G2 phase and LN229 cells in G2 and S phases. Thirdly, SCU and C18H17NO6 both induced the apoptosis of U251 and LN229. The combination further increased the apoptosis rate of both cells compared with the two drugs alone. Furthermore, SCU and C18H17NO6 both inhibited the lateral and vertical migration of both cells, which was further repressed by the combination. More importantly, the effect of SCU and the combination was better than positive control-temozolomide, and the toxicity was low. Additionally, SCU and C18H17NO6 could suppress the growth of glioma in vivo, and the effect of the combination was better. Finally, SCU and the combination upregulated the presenilin 1 (PSEN1) level but inactivated the phosphatidylinositol 3−kinase (PI3K)-protein kinase B (AKT) signaling in vitro and in vivo. Accordingly, we concluded that scutellarin and its combination with C18H17NO6 suppressed the proliferation/growth and migration and induced the apoptosis of glioma, in which the mechanism might be associated with the repression of PSEN1/PI3K-AKT signaling axis.


Sign in / Sign up

Export Citation Format

Share Document