scholarly journals New Prognostic Biomarkers and Drug Targets for Skin Cutaneous Melanoma via Comprehensive Bioinformatic Analysis and Validation

2021 ◽  
Vol 11 ◽  
Author(s):  
Sitong Zhou ◽  
Yuanyuan Han ◽  
Jiehua Li ◽  
Xiaobing Pi ◽  
Jin Lyu ◽  
...  

Skin cutaneous melanoma (SKCM) is the most aggressive and fatal type of skin cancer. Its highly heterogeneous features make personalized treatments difficult, so there is an urgent need to identify markers for early diagnosis and therapy. Detailed profiles are useful for assessing malignancy potential and treatment in various cancers. In this study, we constructed a co-expression module using expression data for cutaneous melanoma. A weighted gene co-expression network analysis was used to discover a co-expression gene module for the pathogenesis of this disease, followed by a comprehensive bioinformatics analysis of selected hub genes. A connectivity map (CMap) was used to predict drugs for the treatment of SKCM based on hub genes, and immunohistochemical (IHC) staining was performed to validate the protein levels. After discovering a co-expression gene module for the pathogenesis of this disease, we combined GWAS validation and DEG analysis to identify 10 hub genes in the most relevant module. Survival curves indicated that eight hub genes were significantly and negatively associated with overall survival. A total of eight hub genes were positively correlated with SKCM tumor purity, and 10 hub genes were negatively correlated with the infiltration level of CD4+ T cells and B cells. Methylation levels of seven hub genes in stage 2 SKCM were significantly lower than those in stage 3. We also analyzed the isomer expression levels of 10 hub genes to explore the therapeutic target value of 10 hub genes in terms of alternative splicing (AS). All 10 hub genes had mutations in skin tissue. Furthermore, CMap analysis identified cefamandole, ursolic acid, podophyllotoxin, and Gly-His-Lys as four targeted therapy drugs that may be effective treatments for SKCM. Finally, IHC staining results showed that all 10 molecules were highly expressed in melanoma specimens compared to normal samples. These findings provide new insights into SKCM pathogenesis based on multi-omics profiles of key prognostic biomarkers and drug targets. GPR143 and SLC45A2 may serve as drug targets for immunotherapy and prognostic biomarkers for SKCM. This study identified four drugs with significant potential in treating SKCM patients.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yu Zeng ◽  
Nanhong Li ◽  
Zhenzhen Zheng ◽  
Riken Chen ◽  
Min Peng ◽  
...  

Background. Pulmonary arterial hypertension (PAH) is a disease or pathophysiological syndrome which has a low survival rate with abnormally elevated pulmonary artery pressure caused by known or unknown reasons. In addition, the pathogenesis of PAH is not fully understood. Therefore, it has become an urgent matter to search for clinical molecular markers of PAH, study the pathogenesis of PAH, and contribute to the development of new science-based PAH diagnosis and targeted treatment methods. Methods. In this study, the Gene Expression Omnibus (GEO) database was used to downloaded a microarray dataset about PAH, and the differentially expressed genes (DEGs) between PAH and normal control were screened out. Moreover, we performed the functional enrichment analyses and protein-protein interaction (PPI) network analyses of the DEGs. In addition, the prediction of miRNA and transcriptional factor (TF) of hub genes and construction miRNA-TF-hub gene network were performed. Besides, the ROC curve was used to evaluate the diagnostic value of hub genes. Finally, the potential drug targets for the 5 identified hub genes were screened out. Results. 69 DEGs were identified between PAH samples and normal samples. GO and KEGG pathway analyses revealed that these DEGs were mostly enriched in the inflammatory response and cytokine-cytokine receptor interaction, respectively. The miRNA-hub genes network was conducted subsequently with 131 miRNAs, 7 TFs, and 5 hub genes (CCL5, CXCL12, VCAM1, CXCR1, and SPP1) which screened out via constructing the PPI network. 17 drugs interacted with 5 hub genes were identified. Conclusions. Through bioinformatic analysis of microarray data sets, 5 hub genes (CCL5, CXCL12, VCAM1, CXCR1, and SPP1) were identified from DEGs between control samples and PAH samples. Studies showed that the five hub genes might play an important role in the development of PAH. These 5 hub genes might be potential biomarkers for diagnosis or targets for the treatment of PAH. In addition, our work also indicated that paying more attention on studies based on these 5 hub genes might help to understand the molecular mechanism of the development of PAH.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaocong Pang ◽  
Ying Zhao ◽  
Jinhua Wang ◽  
Qimeng Zhou ◽  
Lvjie Xu ◽  
...  

Aim. The incidence of Alzheimer’s disease (AD) has been increasing in recent years, but there exists no cure and the pathological mechanisms are not fully understood. This study aimed to find out the pathogenesis of learning and memory impairment, new biomarkers, potential therapeutic targets, and drugs for AD. Methods. We downloaded the microarray data of entorhinal cortex (EC) and hippocampus (HIP) of AD and controls from Gene Expression Omnibus (GEO) database, and then the differentially expressed genes (DEGs) in EC and HIP regions were analyzed for functional and pathway enrichment. Furthermore, we utilized the DEGs to construct coexpression networks to identify hub genes and discover the small molecules which were capable of reversing the gene expression profile of AD. Finally, we also analyzed microarray and RNA-seq dataset of blood samples to find the biomarkers related to gene expression in brain. Results. We found some functional hub genes, such as ErbB2, ErbB4, OCT3, MIF, CDK13, and GPI. According to GO and KEGG pathway enrichment, several pathways were significantly dysregulated in EC and HIP. CTSD and VCAM1 were dysregulated significantly in blood, EC, and HIP, which were potential biomarkers for AD. Target genes of four microRNAs had similar GO_terms distribution with DEGs in EC and HIP. In addtion, small molecules were screened out for AD treatment. Conclusion. These biological pathways and DEGs or hub genes will be useful to elucidate AD pathogenesis and identify novel biomarkers or drug targets for developing improved diagnostics and therapeutics against AD.


2014 ◽  
Vol 15 (3) ◽  
pp. 255-271 ◽  
Author(s):  
Rubem Sadok Menna-Barreto ◽  
Kele Belloze ◽  
Jonas Perales ◽  
Floriano Silva-Jr

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jing Quan ◽  
Yuchen Bai ◽  
Yunbei Yang ◽  
Er Lei Han ◽  
Hong Bai ◽  
...  

Abstract Background The molecular prognostic biomarkers of clear cell renal cell carcinoma (ccRCC) are still unknown. We aimed at researching the candidate biomarkers and potential therapeutic targets of ccRCC. Methods Three ccRCC expression microarray datasets (include GSE14762, GSE66270 and GSE53757) were downloaded from the gene expression omnibus (GEO) database. The differentially expressed genes (DEGs) between ccRCC and normal tissues were explored. The potential functions of identified DEGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). And then the protein - protein interaction network (PPI) was established to screen the hub genes. After that, the expressions of hub genes were identified by the oncomine database. The hub genes’ prognostic values of patients with ccRCC were analyzed by GEPIA database. Results A total of 137 DEGs were identified by utilizing the limma package and RRA method, including 63 upregulated genes and 74 downregulated genes. It is found that 137 DEGs were mainly enriched in 82 functional terms and 24 pathways in accordance with the research results. Thirteen highest-scoring genes were screened as hub genes (include 10 upregulated genes and 3 downregulated candidate genes) by utilizing the PPI network and module analysis. Through integrating the oncoming database and GEPIA database, the author found that C3 and CXCR4 are not only overexpressed in ccRCC, but also associated with the prognosis of ccRCC. Further results could reveal that patients with high C3 expression had a poor overall survival (OS), while patients with high CTSS and TLR3 expressions had a good OS; patients with high C3 and CXCR4 expressions had a poor disease-free survival (DFS), while ccRCC patients with high TLR3 expression had a good DFS. Conclusion These findings suggested that C3 and CXCR4 were the candidate biomarkers and potential therapeutic targets of ccRCC patients.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii275-iii276
Author(s):  
Yang Zhang ◽  
Jianguo Xu

Abstract BACKGROUND MicroRNA (miRNA) has been found to be involved in development of many malignant pediatric brain tumors, including atypical teratoid/rhabdoid tumor (AT/RT) that is highly aggressive and carries a dismal prognosis. The current study investigated the potential value of miRNAs and pivotal genes associated with AT/RT using bioinformatics analysis, aiming to identify new prognostic biomarkers and candidate drugs for AT/RT patients. METHODS Differentially expressed miRNAs (DEMs) and genes (DEGs) between AT/RT and normal control samples were obtained from GEO database. The target genes of DEMs were predicted via TargetScanHuman7.2 and miRDB, and then intersected with DEGs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of overlapping genes were conducted, followed by construction of protein-protein interaction network. Hub genes were determined by Cytoscape software, and their prognostic values were evaluated using Kaplan-Meier analysis. Connectivity Map database was used to identify latent therapeutic agents. RESULTS A total of 11 DEMs (hsa-miR-1224-5p, hsa-miR-128-3p, hsa-miR-17-5p, hsa-miR-18b-5p, hsa-miR-29c-5p, hsa-miR-329-3p, hsa-miR-379-5p, hsa-miR-433-3p, hsa-miR-488-5p, hsa-miR-656-3p and hsa-miR-885-5p) were screened. By intersecting 3275 predicted target genes and 925 DEGs, we finally identified 226 overlapping genes that were enriched in pathways in cancer and MAPK signaling pathway. Four hub genes (GRIA2, NRXN1, SLC6A1 and SYT1) were significantly associated with the overall survival of AT/RT patients. Candidate drugs included histone deacetylase inhibitor (givinostat), DNA synthesis inhibitor (floxuridine), cyclin-dependent kinase inhibitor (purvalanol) and janus kinase inhibitor (lestaurtinib). CONCLUSION In summary, this study systematically analyzed AT/RT-related miRNAs and pivotal genes to provide novel prognostic biomarkers and potential therapeutic agents.


2022 ◽  
Vol 12 ◽  
Author(s):  
Lu Xia ◽  
Lu Liu ◽  
Qiang Wang ◽  
Jing Ding ◽  
Xin Wang

PurposeThis study aimed to analyse the correlation between the pyroptosis pathway and epilepsy using bioinformatics analysis technology. We analyzed the expression of gasdermin D (GSDMD) and gasdermin E (GSDME), the key molecules of pyroptosis, in kainic acid-induced epileptic mice.MethodsWeighted gene co-expression network analysis (WGCNA) was used to construct a signed co-expression network from expression data to screen gene sets closely related to epilepsy. The correlation between the module and epilepsy was verified through module conservative analysis, gene ontology (GO) annotation analysis, and correlation analysis with known epilepsy genes. We obtained currently recognized pyroptosis-related molecules through literature review, and correlation analysis was used to evaluate their correlation with epilepsy. Differentially expressed gene (DEG) analysis was used to analyse expression changes of pyroptosis-related molecules at the transcriptome level, compared to the sham group. We subsequently established a kainic acid-induced status epilepticus (SE) model in mice and validated the mRNA and protein expression of GSDMD and GSDME, the key molecules of pyroptosis, by quantitative reverse transcription PCR (qRT-PCR) and western blotting (WB).ResultsUsing WGCNA, module conservative analysis, and correlation analysis with known epilepsy genes, we screened out a module (a gene set of interest) closely related to epilepsy that was prominently enriched in immune and inflammatory-related biological processes. Correlation analysis results suggest that pyroptosis-related molecules are closely related to this module, but have no obvious correlation with others. DEG analysis of molecules associated with pyroptosis suggests that most of the pyroptosis-related molecules had significantly increased expression after SE, such as IL1b, Casp1, Casp4, Pycard, Gsdmd, Nlrp3, Aim2, Mefv, Tlr2, Tlr3, and Tlr4. qRT-PCR and WB analysis confirmed that the mRNA and protein levels of GSDMD in the mouse hippocampus were significantly upregulated after SE. The mRNA expression of GSDME was not different between the epilepsy group and sham group. However, the WB results showed that the expression of full-length GSDME was decreased and GSDME-N-terminus were significantly increased after SE.ConclusionsOur study highlights that the pyroptosis pathway may be closely related to epilepsy. GSDMD and GSDME, the key executive molecules of pyroptosis, will help to understand the pathogenesis of epilepsy and aid in discovering new targets for anti-epileptic drug treatments.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jie Jiang ◽  
Chong Liu ◽  
Guoyong Xu ◽  
Tuo Liang ◽  
Chaojie Yu ◽  
...  

IntroductionThis study aimed to identify important genes associated with melanoma to further develop new target gene therapies and analyze their significance concerning prognosis.Materials and methodsGene expression data for melanoma and normal tissue were downloaded from three databases. Differentially co-expressed genes were identified by WGCNA and DEGs analysis. These genes were subjected to GO, and KEGG enrichment analysis and construction of the PPI visualized with Cytoscape and screened for the top 10 Hub genes using CytoHubba. We validated the Hub gene’s protein levels with an immunohistochemical assay to confirm the accuracy of our analysis.ResultsA total of 435 differentially co-expressed genes were obtained. Survival curves showed that high expression of FOXM1,\ EXO1, KIF20A, TPX2, and CDC20 in melanoma patients with 5 of the top 10 hub genes was associated with reduced overall survival (OS). Immunohistochemistry showed that all five genes were expressed at higher protein levels in melanoma than in paracancerous tissues.ConclusionFOXM1, EXO1, KIF20A, TPX2, and CDC20 are prognosis-associated core genes of melanoma, and their high expression correlates with the low prognosis of melanoma patients and can be used as biomarkers for melanoma diagnosis, treatment, and prognosis prediction.


2021 ◽  
Author(s):  
Perumal Jayaraj ◽  
Seema Sen ◽  
Pranjal Vats ◽  
Shefali Dahiya ◽  
Vanshika Mohindroo

Background: Eyelid BCC accounts for more than 90% of Eyelid malignant neoplasms. Various aberrant signalling pathways and genes in Non-Ocular BCC have been found whereas Eyelid bcc remains elusive. Objective: This study aims to find the common DEGs of Eyelid and Non-Ocular BCC using bioinformatic analysis and text mining to gain more insights into the molecular aspects common to both BCC non-ocular and Eyelid BCC and to identify common potential prognostic markers. Material and method: The Gene Expression profiles of Eyelid BCC (GSE103439) and Non-Ocular BCC (GSE53462) were obtained from the NCBI GEO database followed by identification of common DEGs. Protein-Protein interaction and Pathway Enrichment analysis of these screened genes was done using bioinformatic tools like STRING, Cytoscape and BiNGO, DAVID, KEGG respectively. Results: A total of 181 genes were found common in both datasets. A PPI network was formed for the screened genes and 20 HUB genes were sorted which included CTNNB1, MAPK14, BTRC, EGFR, ADAM17. Pathway enrichment of HUB genes showed that they were dysregulated in carcinogenic and apoptotic pathways that seem to play a role in the progression of both the BCC. Conclusion: The result and findings of bioinformatic analysis highlighted the molecular pathways and genes enriched in both Eyelid BCC as well as Non- Ocular BCC. The identified pathways should be studied further to recognise common molecular events that would lead to the progression of BCC. This may provide a window to explore the prognostic and therapeutic strategies common to both BCC. Keywords: Basal cell carcinoma (BCC), Cancer, Microarray, Ophthalmology, Tumour marker


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jianye Tan ◽  
Haofeng Liang ◽  
Bingsheng Yang ◽  
Shuang Zhu ◽  
Guofeng Wu ◽  
...  

Osteosarcoma (OS) often occurs in children and often undergoes metastasis, resulting in lower survival rates. Information on the complexity and pathogenic mechanism of OS is limited, and thus, the development of treatments involving alternative molecular and genetic targets is hampered. We categorized transcriptome data into metastasis and nonmetastasis groups, and 400 differential RNAs (230 messenger RNAs (mRNAs) and 170 long noncoding RNAs (lncRNAs)) were obtained by the edgeR package. Prognostic genes were identified by performing univariate Cox regression analysis and the Kaplan–Meier (KM) survival analysis. We then examined the correlation between the expression level of prognostic lncRNAs and mRNAs. Furthermore, microRNAs (miRNAs) corresponding to the coexpression of lncRNA-mRNA was predicted, which was used to construct a competitive endogenous RNA (ceRNA) regulatory network. Finally, multivariate Cox proportional risk regression analysis was used to identify hub prognostic genes. Three hub prognostic genes (ABCG8, LOXL4, and PDE1B) were identified as potential prognostic biomarkers and therapeutic targets for OS. Furthermore, transcriptions factors (TFs) (DBP, ESX1, FOS, FOXI1, MEF2C, NFE2, and OTX2) and lncRNAs (RP11-357H14.16, RP11-284N8.3, and RP11-629G13.1) that were able to affect the expression levels of genes before and after transcription were found to regulate the prognostic hub genes. In addition, we identified drugs related to the prognostic hub genes, which may have potential clinical applications. Immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that the expression levels of ABCG8, LOXL4, and PDE1B coincided with the results of bioinformatics analysis. Moreover, the relationship between the hub prognostic gene expression and patient prognosis was also validated. Our study elucidated the roles of three novel prognostic biomarkers in the pathogenesis of OS as well as presenting a potential clinical treatment for OS.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hao Yu ◽  
Yang Liu ◽  
Chao Li ◽  
Jianhao Wang ◽  
Bo Yu ◽  
...  

Background. Neuropathic pain (NP) is a devastating complication following nerve injury, and it can be alleviated by regulating neuroimmune direction. We aimed to explore the neuroimmune mechanism and identify some new diagnostic or therapeutic targets for NP treatment via bioinformatic analysis. Methods. The microarray GSE18803 was downloaded and analyzed using R. The Venn diagram was drawn to find neuroimmune-related differentially expressed genes (DEGs) in neuropathic pain. Gene Ontology (GO), pathway enrichment, and protein-protein interaction (PPI) network were used to analyze DEGs, respectively. Besides, the identified hub genes were submitted to the DGIdb database to find relevant therapeutic drugs. Results. A total of 91 neuroimmune-related DEGs were identified. The results of GO and pathway enrichment analyses were closely related to immune and inflammatory responses. PPI analysis showed two important modules and 8 hub genes: PTPRC, CD68, CTSS, RAC2, LAPTM5, FCGR3A, CD53, and HCK. The drug-hub gene interaction network was constructed by Cytoscape, and it included 24 candidate drugs and 3 hub genes. Conclusion. The present study helps us better understand the neuroimmune mechanism of neuropathic pain and provides some novel insights on NP treatment, such as modulation of microglia polarization and targeting bone resorption. Besides, CD68, CTSS, LAPTM5, FCGR3A, and CD53 may be used as early diagnostic biomarkers and the gene HCK can be a therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document