scholarly journals Functional Genomics of PRUNE1 in Neurodevelopmental Disorders (NDDs) Tied to Medulloblastoma (MB) and Other Tumors

2021 ◽  
Vol 11 ◽  
Author(s):  
Francesca Bibbò ◽  
Carmen Sorice ◽  
Veronica Ferrucci ◽  
Massimo Zollo

We analyze the fundamental functions of Prune_1 in brain pathophysiology. We discuss the importance and maintenance of the function of Prune_1 and how its perturbation influences both brain pathological conditions, neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies (NMIHBA; OMIM: 617481), and tumorigenesis of medulloblastoma (MB) with functional correlations to other tumors. A therapeutic view underlying recent discoveries identified small molecules and cell penetrating peptides to impair the interaction of Prune_1 with protein partners (e.g., Nm23-H1), thus further impairing intracellular and extracellular signaling (i.e., canonical Wnt and TGF-β pathways). Identifying the mechanism of action of Prune_1 as responsible for neurodevelopmental disorders (NDDs), we have recognized other genes which are found overexpressed in brain tumors (e.g., MB) with functional implications in neurodevelopmental processes, as mainly linked to changes in mitotic cell cycle processes. Thus, with Prune_1 being a significant target in NDDs, we discuss how its network of action can be dysregulated during brain development, thus generating cancer and metastatic dissemination.

Author(s):  
Roberta Battini ◽  
Enrico Bertini ◽  
Roberta Milone ◽  
Chiara Aiello ◽  
Rosa Pasquariello ◽  
...  

Abstract PRUNE1-related disorders manifest as severe neurodevelopmental conditions associated with neurodegeneration, implying a differential diagnosis at birth with static encephalopathies, and later with those manifesting progressive brain damage with the involvement of both the central and the peripheral nervous system.Here we report on another patient with PRUNE1 (p.Asp106Asn) recurrent mutation, whose leukodystrophy, inferior olives hyperintensity, and macrocephaly led to the misleading clinical suspicion of Alexander disease. Clinical features, together with other recent descriptions, suggest avoiding the term “microcephaly” in defining this disorder that could be renamed “neurodevelopmental disorder with progressive encephalopathy, hypotonia, and variable brain anomalies” (NPEHBA).


2021 ◽  
Vol 7 (11) ◽  
pp. eaba1187
Author(s):  
Rina Baba ◽  
Satoru Matsuda ◽  
Yuuichi Arakawa ◽  
Ryuji Yamada ◽  
Noriko Suzuki ◽  
...  

Persistent epigenetic dysregulation may underlie the pathophysiology of neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here, we show that the inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity normalizes aberrant epigenetic control of gene expression in neurodevelopmental disorders. Maternal exposure to valproate or poly I:C caused sustained dysregulation of gene expression in the brain and ASD-like social and cognitive deficits after birth in rodents. Unexpectedly, a specific inhibitor of LSD1 enzyme activity, 5-((1R,2R)-2-((cyclopropylmethyl)amino)cyclopropyl)-N-(tetrahydro-2H-pyran-4-yl)thiophene-3-carboxamide hydrochloride (TAK-418), almost completely normalized the dysregulated gene expression in the brain and ameliorated some ASD-like behaviors in these models. The genes modulated by TAK-418 were almost completely different across the models and their ages. These results suggest that LSD1 enzyme activity may stabilize the aberrant epigenetic machinery in neurodevelopmental disorders, and the inhibition of LSD1 enzyme activity may be the master key to recover gene expression homeostasis. TAK-418 may benefit patients with neurodevelopmental disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph J. Rossi ◽  
Jill A. Rosenfeld ◽  
Katie M. Chan ◽  
Haley Streff ◽  
Victoria Nankivell ◽  
...  

AbstractAberrations in the excitatory/inhibitory balance within the brain have been associated with both intellectual disability (ID) and schizophrenia (SZ). The bHLH-PAS transcription factors NPAS3 and NPAS4 have been implicated in controlling the excitatory/inhibitory balance, and targeted disruption of either gene in mice results in a phenotype resembling ID and SZ. However, there are few human variants in NPAS3 and none in NPAS4 that have been associated with schizophrenia or neurodevelopmental disorders. From a clinical exome sequencing database we identified three NPAS3 variants and four NPAS4 variants that could potentially disrupt protein function in individuals with either developmental delay or ID. The transcriptional activity of the variants when partnered with either ARNT or ARNT2 was assessed by reporter gene activity and it was found that variants which truncated the NPAS3/4 protein resulted in a complete loss of transcriptional activity. The ability of loss-of-function variants to heterodimerise with neuronally enriched partner protein ARNT2 was then determined by co-immunoprecipitation experiments. It was determined that the mechanism for the observed loss of function was the inability of the truncated NPAS3/4 protein to heterodimerise with ARNT2. This further establishes NPAS3 and NPAS4 as candidate neurodevelopmental disorder genes.


2018 ◽  
Author(s):  
Bernard Friedenson

AbstractThe purpose of this study was to understand the role of infection in the origin of chromosomal anomalies linked to neurodevelopmental disorders. In children with disorders in the development of their nervous systems, chromosome anomalies known to cause these disorders were compared to viruses and bacteria including known teratogens. Results support the explanation that parental infections disrupt elaborate multi-system gene coordination needed for neurodevelopment. Genes essential for neurons, lymphatic drainage, immunity, circulation, angiogenesis, cell barriers, structure, and chromatin activity were all found close together in polyfunctional clusters that were deleted in neurodevelopmental disorders. These deletions account for immune, circulatory, and structural deficits that accompany neurologic deficits. In deleted gene clusters, specific and repetitive human DNA matched infections and passed rigorous artifact tests. In some patients, epigenetic driver mutations were found and may be functionally equivalent to deleting a cluster or changing topologic chromatin interactions because they change access to large chromosome segments. In three families, deleted DNA sequences were associated with intellectual deficits and were not included in any database of genomic variants. These sequences were thousands of bp and unequivocally matched foreign DNAs. Analogous homologies were also found in chromosome anomalies of a recurrent neurodevelopmental disorder. Viral and bacterial DNAs that match repetitive or specific human DNA segments are thus proposed to interfere with highly active break repair during meiosis; sometimes delete polyfunctional clusters, and disable epigenetic drivers. Mis-repaired gametes produce zygotes containing rare chromosome anomalies which cause neurologic disorders and accompanying non-neurologic signs. Neurodevelopmental disorders may be examples of assault on the human genome by foreign DNA with some infections more likely tolerated because they resemble human DNA segments. Further tests of this model await new technology.Graphic Abstract


2021 ◽  
Vol 12 ◽  
Author(s):  
Maria Pontillo ◽  
Roberto Averna ◽  
Maria Cristina Tata ◽  
Fabrizia Chieppa ◽  
Maria Laura Pucciarini ◽  
...  

Schizophrenia before the age of 18 years is usually divided into two categories. Early-onset schizophrenia (EOS) presents between the ages of 13 and 17 years, whereas very-early-onset schizophrenia (VEOS) presents at or before the age of 12 years. Previous studies have found that neurodevelopmental difficulties in social, motor, and linguistic domains are commonly observed in VEOS/EOS patients. Recent research has also shown a high prevalence of neurodevelopmental disorders (e.g., intellectual disability, communication disorders, autism spectrum disorder, neurodevelopmental motor disorders) in VEOS/EOS patients, indicating genetic overlap between these conditions. These findings lend support to the neurodevelopmental continuum model, which holds that childhood neurodevelopmental disorders and difficulties and psychiatric disorders (e.g., schizophrenia) fall on an etiological and neurodevelopmental continuum, and should not be considered discrete entities. Based on this literature, in this study we focused on the overlap between neurodevelopmental disorders and schizophrenia investigating, in a large sample (N = 230) of VEOS/EOS children and adolescents, the clinical differences, at the onset of psychosis, between VEOS/EOS with neurodevelopmental disorder or neurodevelopmental difficulties and VEOS/EOS with no diagnosed neurodevelopmental disorder or neurodevelopmental difficulties. The findings showed that, in children and adolescents with a neurodevelopmental disorder or neurodevelopmental difficulties, psychosis onset occurred at an earlier age, was associated with more severe functional impairment (e.g., global, social, role), and was characterized by positive symptoms (e.g., grandiose ideas, perceptual abnormalities, disorganized communication) and disorganized symptoms (e.g., odd behavior or appearance, bizarre thinking). Instead, in children and adolescents without a neurodevelopmental disorder or neurodevelopmental difficulties, psychosis onset was mainly characterized by negative symptomatology (e.g., social anhedonia, avolition, expression of emotion, experience of emotions and self, ideational richness). Given these differences, the presence of a neurodevelopmental disorder or neurodevelopmental difficulties should be carefully investigated and integrated early into the assessment and treatment plan for VEOS/EOS patients.


2018 ◽  
Vol 49 (1) ◽  
pp. 84-91 ◽  
Author(s):  
Elina Jokiranta-Olkoniemi ◽  
Keely Cheslack-Postava ◽  
Petteri Joelsson ◽  
Auli Suominen ◽  
Alan S. Brown ◽  
...  

AbstractBackgroundProbands with attention-deficit/hyperactivity disorder (ADHD) are at increased risk for several psychiatric and neurodevelopmental disorders. The risk of these disorders among the siblings of probands has not been thoroughly assessed in a population-based cohort.MethodsEvery child born in Finland in 1991–2005 and diagnosed with ADHD in 1995–2011 were identified from national registers. Each case was matched with four controls on sex, place, and date of birth. The full siblings of the cases and controls were born in 1981–2007 and diagnosed in 1981–2013. In total, 7369 cases with 12 565 siblings and 23 181 controls with 42 753 siblings were included in the analyses conducted using generalized estimating equations.Results44.2% of the cases and 22.2% of the controls had at least one sibling diagnosed with any psychiatric or neurodevelopmental disorder (risk ratio, RR = 2.1; 95% CI 2.0–2.2). The strongest associations were demonstrated for childhood-onset disorders including ADHD (RR = 5.7; 95% CI 5.1–6.3), conduct and oppositional disorders (RR = 4.0; 95% CI 3.5–4.5), autism spectrum disorders (RR = 3.9; 95% CI 3.3–4.6), other emotional and social interaction disorders (RR = 2.7; 95% CI 2.4–3.1), learning and coordination disorders (RR = 2.6; 95% CI 2.4–2.8), and intellectual disability (RR = 2.4; 95% CI 2.0–2.8). Also, bipolar disorder, unipolar mood disorders, schizophrenia spectrum disorders, other neurotic and personality disorders, substance abuse disorders, and anxiety disorders occurred at increased frequency among the siblings of cases.ConclusionsThe results offer potential utility for early identification of neurodevelopmental and psychiatric disorders in at-risk siblings of ADHD probands and also argue for more studies on common etiologies.


Author(s):  
Thanga Aarthy M. ◽  
Menaka R. ◽  
Karthik R.

Children with neurodevelopmental disorders are increasing gradually every year. One in 100 children are diagnosed with brain function disorder. There are wide categories of disorder such as attention deficit hyperactive disorder, learning, autism spectrum disorder (ASD), etc. In this work, the focus is on ASD, its clinical methods, and analysis in various research works. ASD is a neurodevelopmental disorder which affects the intellectual functioning, social interaction (adaptive behavior), and has a specific obsessive interest. At present, there is no known cure for ASD, but the level of the pathological condition can be reduced when it is detected early. Early detection is tough and challenging till date. Many researches were carried out to ease the early detection for clinicians. Each method has its own merits and demerits. This chapter reviews and condenses various research works and their efficacy in analysis for the early diagnosis and improvement in children with autism.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sonia Mayo ◽  
Sandra Monfort ◽  
Mónica Roselló ◽  
Silvestre Oltra ◽  
Carmen Orellana ◽  
...  

Alterations of epigenetic mechanisms, and more specifically imprinting modifications, could be responsible of neurodevelopmental disorders such as intellectual disability (ID) or autism together with other associated clinical features in many cases. Currently only eight imprinting syndromes are defined in spite of the fact that more than 200 genes are known or predicted to be imprinted. Recent publications point out that some epimutations which cause imprinting disorders may affect simultaneously different imprintedloci, suggesting that DNA-methylation may have been altered more globally. Therefore, we hypothesised that the detection of altered methylation patterns in known imprintinglociwill indirectly allow identifying new syndromes due to epimutations among patients with unexplained ID. In a screening for imprinting alterations in 412 patients with syndromic ID/autism we found five patients with altered methylation in the four genes studied:MEG3, H19, KCNQ1OT1, andSNRPN. Remarkably, the cases with partial loss of methylation inKCNQ1OT1andSNRPNpresent clinical features different to those associated with the corresponding imprinting syndromes, suggesting a multilocus methylation defect in accordance with our initial hypothesis. Consequently, our results are a proof of concept that the identification of epimutations in knownlociin patients with clinical features different from those associated with known syndromes will eventually lead to the definition of new imprinting disorders.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Olafur O. Gudmundsson ◽  
G. Bragi Walters ◽  
Andres Ingason ◽  
Stefan Johansson ◽  
Tetyana Zayats ◽  
...  

Abstract Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable common childhood-onset neurodevelopmental disorder. Some rare copy number variations (CNVs) affect multiple neurodevelopmental disorders such as intellectual disability, autism spectrum disorders (ASD), schizophrenia and ADHD. The aim of this study is to determine to what extent ADHD shares high risk CNV alleles with schizophrenia and ASD. We compiled 19 neuropsychiatric CNVs and test 14, with sufficient power, for association with ADHD in Icelandic and Norwegian samples. Eight associate with ADHD; deletions at 2p16.3 (NRXN1), 15q11.2, 15q13.3 (BP4 & BP4.5–BP5) and 22q11.21, and duplications at 1q21.1 distal, 16p11.2 proximal, 16p13.11 and 22q11.21. Six of the CNVs have not been associated with ADHD before. As a group, the 19 CNVs associate with ADHD (OR = 2.43, P = 1.6 × 10−21), even when comorbid ASD and schizophrenia are excluded from the sample. These results highlight the pleiotropic effect of the neuropsychiatric CNVs and add evidence for ADHD, ASD and schizophrenia being related neurodevelopmental disorders rather than distinct entities.


Sign in / Sign up

Export Citation Format

Share Document