scholarly journals Characteristics of the Gut Microbiome and IL-13/TGF-β1 Mediated Fibrosis in Post-Kasai Cholangitis of Biliary Atresia

2021 ◽  
Vol 9 ◽  
Author(s):  
Lingdu Meng ◽  
Jia Liu ◽  
Junfeng Wang ◽  
Min Du ◽  
Shouhua Zhang ◽  
...  

Aims: Cholangitis in biliary atresia (BA), which accelerates liver fibrosis progression, is among the most common serious complications after Kasai surgery; however, its etiology remains elusive. Gut microbiome migration may contribute to post-Kasai cholangitis. Further, there is no appropriate model of BA post-Kasai cholangitis for use in investigation of its pathogenesis.Methods: We explored the characteristics of gut microbiome in patients with BA before and after Kasai procedure based on 16S rDNA sequencing. We isolated the dominant strain from patient stool samples and established an in vitro model by infecting patient-derived liver organoids. Bulk RNA-seq was performed, and we conducted qPCR, ELISA, and western blot to explore the mechanism of fibrosis.Results: Gut microbiome diversity was lower in patients after, relative to before, Kasai procedure, while the relative abundance of Klebsiella was higher. Patients who developed cholangitis within 1 month after discharge tended to have simpler gut microbiome composition, dominated by Klebsiella. Klebsiella pneumoniae (KPN) was isolated and used for modeling. RNA-seq showed that BA liver organoids expressed markers of hepatic progenitor cells (KRT19, KRT7, EPCAM, etc.) and that organoids were more stable and less heterogeneous among individuals than liver tissues. After infection with KPN, gene expression patterns in BA liver organoids were enriched in pathways related to infection, apoptosis, and fibrosis. Preliminary experiments indicated the presence of IL-13/TGF-β1-mediated fibrosis in post-Kasai cholangitis.Conclusions: Our findings using a newly-developed model, demonstrate a key role for Klebsiella, and a potential mechanism underlying fibrosis in post-Kasai cholangitis, mediated by the IL-13/TGF-β1 pathway.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shanthi G. Parkar ◽  
Jovyn K. T. Frost ◽  
Doug Rosendale ◽  
Halina M. Stoklosinski ◽  
Carel M. H. Jobsis ◽  
...  

AbstractEight plant-based foods: oat flour and pureed apple, blackcurrant, carrot, gold- and green-fleshed kiwifruit, pumpkin, sweetcorn, were pre-digested and fermented with pooled inocula of weaning infants’ faecal bacteria in an in vitro hindgut model. Inulin and water were included as controls. The pre-digested foods were analysed for digestion-resistant fibre-derived sugar composition and standardised to the same total fibre concentration prior to fermentation. The food-microbiome interactions were then characterised by measuring microbial acid and gas metabolites, microbial glycosidase activity and determining microbiome structure. At the physiologically relevant time of 10 h of fermentation, the xyloglucan-rich apple and blackcurrant favoured a propiogenic metabolic and microbiome profile with no measurable gas production. Glucose-rich, xyloglucan-poor pumpkin caused the greatest increases in lactate and acetate (indicative of high fermentability) commensurate with increased bifidobacteria. Glucose-rich, xyloglucan-poor oats and sweetcorn, and arabinogalactan-rich carrot also increased lactate and acetate, and were more stimulatory of clostridial families, which are indicative of increased microbial diversity and gut and immune health. Inulin favoured a probiotic-driven consortium, while water supported a proteolytic microbiome. This study shows that the fibre-derived sugar composition of complementary foods may shape infant gut microbiome structure and metabolic activity, at least in vitro.


2018 ◽  
Author(s):  
Avi Z. Rosenberg ◽  
Carrie Wright ◽  
Karen Fox-Talbot ◽  
Anandita Rajpurohit ◽  
Courtney Williams ◽  
...  

AbstractAccurate, RNA-seq based, microRNA (miRNA) expression estimates from primary cells have recently been described. However, this in vitro data is mainly obtained from cell culture, which is known to alter cell maturity/differentiation status, significantly changing miRNA levels. What is needed is a robust method to obtain in vivo miRNA expression values directly from cells. We introduce expression microdissection miRNA small RNA sequencing (xMD-miRNA-seq), a method to isolate cells directly from formalin fixed paraffin-embedded (FFPE) tissues. xMD-miRNA-seq is a low-cost, high-throughput, immunohistochemistry-based method to capture any cell type of interest. As a proof-of-concept, we isolated colon epithelial cells from two specimens and performed low-input small RNA-seq. We generated up to 600,000 miRNA reads from the samples. Isolated epithelial cells, had abundant epithelial-enriched miRNA expression (miR-192; miR-194; miR-200b; miR-200c; miR-215; miR-375) and overall similar miRNA expression patterns to other epithelial cell populations (colonic enteroids and flow-isolated colon epithelium). xMD-derived epithelial cells were generally not contaminated by other adjacent cells of the colon as noted by t-SNE analysis. xMD-miRNA-seq allows for simple, economical, and efficient identification of cell-specific miRNA expression estimates. Further development will enhance rapid identification of cell-specific miRNA expression estimates in health and disease for nearly any cell type using archival FFPE material.


mSphere ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Frederick J. Warren ◽  
Naoki M. Fukuma ◽  
Deirdre Mikkelsen ◽  
Bernadine M. Flanagan ◽  
Barbara A. Williams ◽  
...  

ABSTRACT Starch is a major source of energy in the human diet and is consumed in diverse forms. Resistant starch (RS) escapes small intestinal digestion and is fermented in the colon by the resident microbiota, with beneficial impacts on colonic function and host health, but the impacts of the micro- and nanoscale structure of different physical forms of food starch on the broader microbial community have not been described previously. Here, we use a porcine in vitro fermentation model to establish that starch structure dramatically impacts microbiome composition, including the key amylolytic species, and markedly alters both digestion kinetics and fermentation outcomes. We show that three characteristic food forms of starch that survive digestion in the small intestine each give rise to substantial and distinct changes in the microbiome and in fermentation products. Our results highlight the complexity of starch fermentation processes and indicate that not all forms of RS in foods are degraded or fermented in the same way. This work points the way for the design of RS with tailored degradation by defined microbial communities, informed by an understanding of how substrate structure influences the gut microbiome, to improve nutritive value and/or health benefits. IMPORTANCE Dietary starch is a major component in the human diet. A proportion of the starch in our diet escapes digestion in the small intestine and is fermented in the colon. In this study, we use a model of the colon, seeded with porcine feces, in which we investigate the fermentation of a variety of starches with structures typical of those found in foods. We show that the microbial community changes over time in our model colon are highly dependent on the structure of the substrate and how accessible the starch is to colonic microbes. These findings have important implications for how we classify starches reaching the colon and for the design of foods with improved nutritional properties.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Lai-Ming Yung ◽  
Samuel D Paskin-Flerlage ◽  
Ivana Nikolic ◽  
Scott Pearsall ◽  
Ravindra Kumar ◽  
...  

Introduction: Excessive Transforming Growth Factor-β (TGF-β) signaling has been implicated in pulmonary arterial hypertension (PAH), based on activation of TGF-β effectors and transcriptional targets in affected lungs and the ability of TGF-β type I receptor (ALK5) inhibitors to improve experimental PAH. However, clinical use of ALK5 inhibitors has been limited by cardiovascular toxicity. Hypothesis: We tested whether or not selective blockade of TGF-β and Growth Differentiation Factor (GDF) ligands using a recombinant TGFβ type II receptor extracellular domain Fc fusion protein (TGFBRII-Fc) could impact experimental PAH. Methods: Male SD rats were injected with monocrotaline (MCT) and received vehicle or TGFBRII-Fc (15 mg/kg, twice per week, i.p.). C57BL/6 mice were treated with SU-5416 and hypoxia (SUGEN-HX) and received vehicle or TGFBRII-Fc. RNA-Seq was used to profile transcriptional changes in lungs of MCT rats. Circulating levels of GDF-15 were measured in 241 PAH patients and 41 healthy controls. Human pulmonary artery smooth muscle cells were used to examine signaling in vitro . Results: TGFBRII-Fc is a selective ligand trap, inhibiting the ability of GDF-15, TGF-β1, TGF-β3, but not TGF-β2 to activate SMAD2/3 in vitro . In MCT rats, prophylactic treatment with TGFBRII-Fc normalized expression of TGF-β transcriptional target PAI-1, attenuated PAH and vascular remodeling. Delayed administration of TGFBRII-Fc in rats with established PAH at 2.5 weeks led to improved survival, decreased PAH and remodeling at 5 weeks. Similar findings were observed in SUGEN-HX mice. No valvular abnormalities were found with TGFBRII-Fc treatment. RNA-Seq revealed GDF-15 to be the most highly upregulated TGF-β ligand in the lungs of MCT rats, with only modest increases in TGF-β1 and no change in TGF-β2/3 observed, suggesting a dominant role of GDF-15 in the pathophysiology of this model. Plasma levels of GDF-15 were significantly increased in patients with diverse etiologies of WHO Group I PAH. Conclusions: These findings demonstrate that a selective TGF-β/GDF-15 trap attenuates experimental PAH, remodeling and mortality, without causing valvulopathy. These data highlight the potential role of GDF-15 as a pathogenic molecule and therapeutic target in PAH.


2018 ◽  
Vol 84 (13) ◽  
Author(s):  
Kasie Raymann ◽  
Erick V. S. Motta ◽  
Catherine Girard ◽  
Ian M. Riddington ◽  
Jordan A. Dinser ◽  
...  

ABSTRACT Accumulating evidence suggests that pesticides have played a role in the increased rate of honey bee colony loss. One of the most commonly used pesticides in the United States is the neonicotinoid imidacloprid. Although the primary mode of action of imidacloprid is on the insect nervous system, it has also been shown to cause changes in insects' digestive physiology and alter the microbiota of Drosophila melanogaster larvae. The honey bee gut microbiome plays a major role in bee health. Although many studies have shown that imidacloprid affects honey bee behavior, its impact on the microbiome has not been fully elucidated. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. Consistent with other studies, we show that imidacloprid exposure results in an elevated mortality of honey bees in the hive and increases the susceptibility to infection by pathogens. However, we did not find evidence that imidacloprid affects the gut bacterial community of honey bees. Our in vitro experiments demonstrated that honey bee gut bacteria can grow in the presence of imidacloprid, and we found some evidence that imidacloprid can be metabolized in the bee gut environment. However, none of the individual bee gut bacterial species tested could metabolize imidacloprid, suggesting that the observed metabolism of imidacloprid within in vitro bee gut cultures is not caused by the gut bacteria. Overall, our results indicate that imidacloprid causes increased mortality in honey bees, but this mortality does not appear to be linked to the microbiome. IMPORTANCE Growing evidence suggests that the extensive use of pesticides has played a large role in the increased rate of honey bee colony loss. Despite extensive research on the effects of imidacloprid on honey bees, it is still unknown whether it impacts the community structure of the gut microbiome. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. We found that the exposure to imidacloprid resulted in an elevated mortality of honey bees and increased the susceptibility to infection by opportunistic pathogens. However, we did not find evidence that imidacloprid affects the gut microbiome of honey bees. We found some evidence that imidacloprid can be metabolized in the bee gut environment in vitro , but because it is quickly eliminated from the bee, it is unlikely that this metabolism occurs in nature. Thus, imidacloprid causes increased mortality in honey bees, but this does not appear to be linked to the microbiome.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mette Simone Aae Madsen ◽  
Jacob Bak Holm ◽  
Albert Pallejà ◽  
Pernille Wismann ◽  
Katrine Fabricius ◽  
...  

Abstract Enteroendocrine L-cell derived peptide hormones, notably glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2), have become important targets in the treatment of type 2 diabetes, obesity and intestinal diseases. As gut microbial imbalances and maladaptive host responses have been implicated in the pathology of obesity and diabetes, this study aimed to determine the effects of pharmacologically stimulated GLP-1 and GLP-2 receptor function on the gut microbiome composition in diet-induced obese (DIO) mice. DIO mice received treatment with a selective GLP-1 receptor agonist (liraglutide, 0.2 mg/kg, BID) or dual GLP-1/GLP-2 receptor agonist (GUB09–145, 0.04 mg/kg, BID) for 4 weeks. Both compounds suppressed caloric intake, promoted a marked weight loss, improved glucose tolerance and reduced plasma cholesterol levels. 16S rDNA sequencing and deep-sequencing shotgun metagenomics was applied for comprehensive within-subject profiling of changes in gut microbiome signatures. Compared to baseline, DIO mice assumed phylogenetically similar gut bacterial compositional changes following liraglutide and GUB09-145 treatment, characterized by discrete shifts in low-abundant species and related bacterial metabolic pathways. The microbiome alterations may potentially associate to the converging biological actions of GLP-1 and GLP-2 receptor signaling on caloric intake, glucose metabolism and lipid handling.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jung-Woong Kim ◽  
Junyeong Yi ◽  
Jinhong Park ◽  
Ji Hoon Jeong ◽  
Jinho Kim ◽  
...  

Abstract Background Biliary tract infection with the carcinogenic human liver fluke, Clonorchis sinensis, provokes chronic inflammation, epithelial hyperplasia, periductal fibrosis, and even cholangiocarcinoma. Complications are proportional to the intensity and duration of the infection. In addition to mechanical irritation of the biliary epithelia from worms, their excretory-secretory products (ESPs) cause chemical irritation, which leads to inflammation, proliferation, and free radical generation. Methods A three-dimensional in vitro cholangiocyte spheroid culture model was established, followed by ESP treatment. This allowed us to examine the intrinsic pathological mechanisms of clonorchiasis via the imitation of prolonged and repetitive in vivo infection. Results Microarray and RNA-Seq analysis revealed that ESP-treated cholangiocyte H69 spheroids displayed global changes in gene expression compared to untreated spheroids. In ESP-treated H69 spheroids, 185 and 63 probes were found to be significantly upregulated and downregulated, respectively, corresponding to 209 genes (p < 0.01, fold change > 2). RNA-Seq was performed for the validation of the microarray results, and the gene expression patterns in both transcriptome platforms were well matched for 209 significant genes. Gene ontology analysis demonstrated that differentially expressed genes were mainly classified into immune system processes, the extracellular region, and the extracellular matrix. Among the upregulated genes, four genes (XAF1, TRIM22, CXCL10, and BST2) were selected for confirmation using quantitative RT-PCR, resulting in 100% similar expression patterns in microarray and RNA-Seq. Conclusions These findings broaden our understanding of the pathological pathways of liver fluke-associated hepatobiliary disorders and suggest a novel therapeutic strategy for this infectious cancer. Graphic abstract


2021 ◽  
Vol 9 (10) ◽  
pp. 2089
Author(s):  
Shanthi G. Parkar ◽  
Doug I. Rosendale ◽  
Halina M. Stoklosinski ◽  
Carel M. H. Jobsis ◽  
Duncan I. Hedderley ◽  
...  

We examined the prebiotic potential of 32 food ingredients on the developing infant microbiome using an in vitro gastroileal digestion and colonic fermentation model. There were significant changes in the concentrations of short-chain fatty-acid metabolites, confirming the potential of the tested ingredients to stimulate bacterial metabolism. The 16S rRNA gene sequencing for a subset of the ingredients revealed significant increases in the relative abundances of the lactate- and acetate-producing Bifidobacteriaceae, Enterococcaceae, and Lactobacillaceae, and lactate- and acetate-utilizing Prevotellaceae, Lachnospiraceae, and Veillonellaceae. Selective changes in specific bacterial groups were observed. Infant whole-milk powder and an oat flour enhanced Bifidobacteriaceae and lactic acid bacteria. A New Zealand-origin spinach powder enhanced Prevotellaceae and Lachnospiraceae, while fruit and vegetable powders increased a mixed consortium of beneficial gut microbiota. All food ingredients demonstrated a consistent decrease in Clostridium perfringens, with this organism being increased in the carbohydrate-free water control. While further studies are required, this study demonstrates that the selected food ingredients can modulate the infant gut microbiome composition and metabolism in vitro. This approach provides an opportunity to design nutrient-rich complementary foods that fulfil infants’ growth needs and support the maturation of the infant gut microbiome.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Hannah Sampson ◽  
Julian Ketley ◽  
Eamonn Mallon ◽  
Julie Morrissey

Bumblebees play a major role in global pollination. Consequently, their health is of high importance for food security worldwide. Yet, recent population estimates show that their numbers are declining. This decline has been attributed to habitat loss, infection and use of pesticides. An important factor for bee health that contributes to population survival is the gut microbiome composition. The bee gut microbiome provides protection from pathogens, is specific to the host and helps break down food. Without a balanced gut microbiome, the health of the bee is threatened through increased infection and mortality. The bee gut microbiome is relatively simple, being dominated by 8 core bacterial species providing a convenient study system. Previous published data shows that air pollution has an impact on bacterial behaviour. Therefore, our hypothesis is exposure to air pollution causes an imbalance in the bee gut microbiome. To test this, we exposed bees to black carbon (BC), a major component of air pollution particulate matter. We assessed the effects on bee behaviour, microbiome composition and gut bacteria treated in vitro. Bees treated with BC showed a significant increase in viable bacterial cells in their faecal community. Independent culture of gut commensals showed that BC significantly alters the structure of their biofilms, which are important for colonisation in vivo. This supports the hypothesis that air pollution can cause an imbalance in the bee gut microbiome, and may adversely influence bee health and pollinator populations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emma Diamond ◽  
Katharine Hewlett ◽  
Swathi Penumutchu ◽  
Alexei Belenky ◽  
Peter Belenky

The microbiome is essential for host health, and perturbations resulting from antibiotic use can lead to dysbiosis and disease. Diet can be a powerful modulator of microbiome composition and function, with the potential to mitigate the negative effects of antibiotic use. Thus, it is necessary to study the impacts of diet and drug interactions on the gut microbiome. Coffee is a commonly consumed beverage containing many compounds that have the potential to affect the microbiome, including caffeine, polyphenols, and fiber. We supplemented mice with caffeinated and decaffeinated coffee in conjunction with amoxicillin, and used 16S rRNA amplicon sequencing of fecal samples to investigate changes in diversity and composition of the murine fecal microbiome. We found that antibiotics, regardless of coffee supplementation, caused significant disruption to the murine fecal microbiome, enriching for Proteobacteria, Verrucomicrobia, and Bacteroidetes, but reducing Firmicutes. While we found that coffee alone did not have a significant impact on the composition of the fecal microbiome, coffee supplementation did significantly affect relative abundance metrics in mice treated with amoxicillin. After caffeinated coffee supplementation, mice treated with amoxicillin showed a smaller increase in Proteobacteria, specifically of the family Burkholderiaceae. Correspondingly we found that in vitro, Burkholderia cepacia was highly resistant to amoxicillin, and that it was inhibited by concentrations of caffeine and caffeinated coffee comparable to levels of caffeine in murine ceca. Overall, this work shows that coffee, and possibly the caffeine component, can impact both the microbiome and microbiome members during antibiotic exposure.


Sign in / Sign up

Export Citation Format

Share Document