scholarly journals Angiotensin AT2 Receptor is Anti-inflammatory and Reno-Protective in Lipopolysaccharide Mice Model: Role of IL-10

2021 ◽  
Vol 12 ◽  
Author(s):  
Naureen Fatima ◽  
Sanket Patel ◽  
Tahir Hussain

Acute kidney injury (AKI) due to endotoxemic insult is predicted by the infiltration of neutrophils, monocytes and macrophages, and the release of pro-and anti-inflammatory cytokines to the site of injury. Earlier, we have demonstrated the role of angiotensin-II type 2 receptor (AT2R) stimulation in reno-protection in lipopolysaccharide (LPS)-induced inflammation and AKI in C57BL6/NHsd mice. Moreover, AT2R activation has been shown to increase the anti-inflammatory cytokine interleukin-10 (IL-10), its role in AT2R-mediated anti-inflammation and reno-protection is unknown. To address this question, in the present study mice were treated with the AT2R agonist C21 (0.3 mg/kg, intraperitoneally), LPS (5 mg/kg, intraperitoneally), or LPS with C21 pre-treatment with or without neutralizing IL-10 antibody. Treatment with C21 alone caused an increase in the plasma and kidney IL-10 levels, which peaks at 2-h, and returned to baseline at 6-h. The C21-induced IL-10 increase was blocked by the AT2R antagonist PD123319 suggesting AT2R’s involvement. LPS treatment caused a profound increase in tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and the LPS-induced increase in these cytokines was attenuated by the C21 pre-treatment (1-h prior LPS) both in the plasma and kidney. Neutralizing IL-10 antibody treatment abrogated the C21-lowering of TNF-α and IL-6 in the kidney but not in the plasma. Similar results as related to the cytokines profiles in all the groups were also observed in the heart and spleen. The alteration in early cytokine profile prompted us to measure the markers of renal function (blood urea nitogen and urinary creatinine) in order to analyze the effect of IL-10 neutralization. However, it was too early to observe changes in renal function. Therefore, the renal function and injury markers were again measured at 24 h. Treatment with neutralizing IL-10 antibody attenuated the C21-mediated improvement in indices of the kidney function, but not the biomarkers of renal injury (kidney injury molecule-1 and neutrophil-gelatinase associated lipocalin). Collectively, our data suggest that the involvement of IL-10 in AT2R-mediated anti-inflammation and reno-protection against LPS is complex, mediating the renal cytokine profile and kidney filtration function, but not the plasma cytokine profile and renal injury markers.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Matheus Correa-Costa ◽  
Tárcio Teodoro Braga ◽  
Raphael José Ferreira Felizardo ◽  
Vinícius Andrade-Oliveira ◽  
Katia Regina Perez ◽  
...  

Macrophages play a special role in the onset of several diseases, including acute and chronic kidney injuries. In this sense, tubule interstitial nephritis (TIN) represents an underestimated insult, which can be triggered by different stimuli and, in the absence of a proper regulation, can lead to fibrosis deposition. Based on this perception, we evaluated the participation of macrophage recruitment in the development of TIN. Initially, we provided adenine-enriched food to WT and searched for macrophage presence and action in the kidney. Also, a group of animals were depleted of macrophages with the clodronate liposome while receiving adenine-enriched diet. We collected blood and renal tissue from these animals and renal function, inflammation, and fibrosis were evaluated. We observed higher expression of chemokines in the kidneys of adenine-fed mice and a substantial protection when macrophages were depleted. Then, we specifically investigated the role of some key chemokines, CCR5 and CCL3, in this TIN experimental model. Interestingly, CCR5 KO and CCL3 KO animals showed less renal dysfunction and a decreased proinflammatory profile. Furthermore, in those animals, there was less profibrotic signaling. In conclusion, we can suggest that macrophage infiltration is important for the onset of renal injury in the adenine-induced TIN.


2021 ◽  
pp. 1-17
Author(s):  
Cong Phi Dang ◽  
Jiraphorn Issara-Amphorn ◽  
Awirut Charoensappakit ◽  
Kanyarat Udompornpitak ◽  
Thansita Bhunyakarnjanarat ◽  
...  

Controlof immune responses through the immunometabolism interference is interesting for sepsis treatment. Then, expression of immunometabolism-associated genes and BAM15, a mitochondrial uncoupling agent, was explored in a proinflammatory model using lipopolysaccharide (LPS) injection. Accordingly, the decreased expression of mitochondrial uncoupling proteins was demonstrated by transcriptomic analysis on metabolism-associated genes in macrophages (RAW246.7) and by polymerase chain reaction in LPS-stimulated RAW246.7 and hepatocytes (Hepa 1–6). Pretreatment with BAM15 at 24 h prior to LPS in macrophages attenuated supernatant inflammatory cytokines (IL-6, TNF-α, and IL-10), downregulated genes of proinflammatory M1 polarization (iNOS and IL-1β), upregulated anti-inflammatory M2 polarization (Arg1 and FIZZ), and decreased cell energy status (extracellular flux analysis and ATP production). Likewise, BAM15 decreased expression of proinflammatory genes (IL-6, TNF-α, IL-10, and iNOS) and reduced cell energy in hepatocytes. In LPS-administered mice, BAM15 attenuated serum cytokines, organ injury (liver enzymes and serum creatinine), and tissue cytokines (livers and kidneys), in part, through the enhanced phosphorylated αAMPK, a sensor of ATP depletion with anti-inflammatory property, in the liver, and reduced inflammatory monocytes/macrophages (Ly6C +ve, CD11b +ve) in the liver as detected by Western blot and flow cytometry, respectively. In conclusion, a proof of concept for inflammation attenuation of BAM15 through metabolic interference-induced anti-inflammation on macrophages and hepatocytes was demonstrated as a new strategy of anti-inflammation in sepsis.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 967
Author(s):  
Micaely Cristina dos Santos Tenório ◽  
Nayara Gomes Graciliano ◽  
Fabiana Andréa Moura ◽  
Alane Cabral Menezes de Oliveira ◽  
Marília Oliveira Fonseca Goulart

N-acetylcysteine (NAC) is a medicine widely used to treat paracetamol overdose and as a mucolytic compound. It has a well-established safety profile, and its toxicity is uncommon and dependent on the route of administration and high dosages. Its remarkable antioxidant and anti-inflammatory capacity is the biochemical basis used to treat several diseases related to oxidative stress and inflammation. The primary role of NAC as an antioxidant stems from its ability to increase the intracellular concentration of glutathione (GSH), which is the most crucial biothiol responsible for cellular redox imbalance. As an anti-inflammatory compound, NAC can reduce levels of tumor necrosis factor-alpha (TNF-α) and interleukins (IL-6 and IL-1β) by suppressing the activity of nuclear factor kappa B (NF-κB). Despite NAC’s relevant therapeutic potential, in several experimental studies, its effectiveness in clinical trials, addressing different pathological conditions, is still limited. Thus, the purpose of this chapter is to provide an overview of the medicinal effects and applications of NAC to human health based on current therapeutic evidence.


2015 ◽  
Vol 6 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Maciej T. Wybraniec ◽  
Katarzyna Mizia-Stec

Background: Contrast-induced acute kidney injury (CI-AKI) remains one of the crucial issues related to the development of invasive cardiology. The massive use of contrast media exposes patients to a great risk of contrast-induced nephropathy and chronic kidney disease development, and increases morbidity and mortality rates. The serum creatinine concentration does not allow for a timely and accurate CI-AKI diagnosis; hence numerous other biomarkers of renal injury have been proposed. Renalase, a novel catecholamine-metabolizing amine oxidase, is synthesized mainly in proximal tubular cells and secreted into urine and blood. It is primarily engaged in the degradation of circulating catecholamines. Notwithstanding its key role in blood pressure regulation, renalase remains a potential CI-AKI biomarker, which was shown to be markedly downregulated in the aftermath of renal injury. In this sense, renalase appears to be the first CI-AKI marker revealing an actual loss of renal function and indicating disease severity. Summary: The purpose of this review is to summarize the contemporary knowledge about the application of novel biomarkers of CI-AKI and to highlight the potential role of renalase as a functional marker of contrast-induced renal injury. Key Messages: Renalase may constitute a missing biochemical link in the mutual interplay between kidney and cardiac pathology known as the cardiorenal syndrome.


2021 ◽  
Author(s):  
Junhui Xu ◽  
Liang Gao ◽  
Miao Yan ◽  
Bingjie Wang ◽  
Zhengyang Song ◽  
...  

Abstract Background: Myelomatous pleural effusion (MPE), as a presentation of extramedullary infiltration of multiple myeloma (MM), is rare and associated with poor outcomes without comparatively effective treatment now. The value of the cytokine detection in pleural effusions to MPE has not been reported at present. Case presentation: We herein report a case of refractory and relapsed multiple myeloma which developed bilateral MPE due to disease progression caused by intolerance to various chemotherapy regimens. The cytomorphology and flow cytometry is adopted in the diagnosis confirmation. The chemotherapy containing immunomodulators combined with thoracic catheterization drainage is applied to the patient, showing a certain therapeutic effect. During the course of disease, the changes of cytokine profile in pleural effusion were monitored by Biolegend CBA technology, revealing that the cytokines such as IL-6 and IL-10 related to the tumor load in pleural effusion decreased with the improvement of the disease, while IL-2, IL-4, IL-17A, TNF - α, INF - γ, granzyme A, Granzyme B, perforin and granulysin increased with the improvement of the disease. Conclusions: There is a prospect that the cytokines level in pleural effusion becomes an indication to evaluate treatment response of MPE, and in the light of our finding, immunomodulators, IL-2 and INF - γ may be utilized in treating patients suffering MPE.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Xudong Wang ◽  
Yali Wang ◽  
Mingjian Kong ◽  
Jianping Yang

Abstract Background: Septic acute kidney injury is considered as a severe and frequent complication that occurs during sepsis. The present study was performed to understand the role of miR-22-3p and its underlying mechanism in sepsis-induced acute kidney injury. Methods: Rats were injected with adenovirus carrying miR-22-3p or miR-NC in the caudal vein before cecal ligation. Meanwhile, HK-2 cells were transfected with the above adenovirus following LPS stimulation. We measured the markers of renal injury (blood urea nitrogen (BUN), serum creatinine (SCR)). Histological changes in kidney tissues were examined by hematoxylin and eosin (H&E), Masson staining, periodic acid Schiff staining and TUNEL staining. The levels of IL-1β, IL-6, TNF-α and NO were determined by ELISA assay. Using TargetScan prediction and luciferase reporter assay, we predicted and validated the association between PTEN and miR-22-3p. Results: Our data showed that miR-22-3p was significantly down-regulated in a rat model of sepsis-induced acute kidney injury, in vivo and LPS-induced sepsis model in HK-2 cells, in vitro. Overexpression of miR-22-3p remarkably suppressed the inflammatory response and apoptosis via down-regulating HMGB1, p-p65, TLR4 and pro-inflammatory factors (IL-1β, IL-6, TNF-α and NO), both in vivo and in vitro. Moreover, PTEN was identified as a target of miR-22-3p. Furthermore, PTEN knockdown augmented, while overexpression reversed the suppressive role of miR-22-3p in LPS-induced inflammatory response. Conclusions: Our results showed that miR-22-3p induced protective role in sepsis-induced acute kidney injury may rely on the repression of PTEN.


2015 ◽  
Vol 11 (4) ◽  
pp. 1169-1173 ◽  
Author(s):  
Mahdi Hasanzadeh Daloee ◽  
Amir Avan ◽  
Seyed Reza Mirhafez ◽  
Elahe Kavousi ◽  
Mehdi Hasanian-Mehr ◽  
...  

Inflammation plays a key role in the initiation, progression, and clinical manifestation of atherosclerosis. Cigarette smoking is a risk factor for atherosclerosis and cardiovascular disease. The aim of the current study was to investigate the serum concentrations of 12 cytokines and growth factors (EGF, INF-γ, IL-1α/-1β/-2/-4/-6/-8/-10, MCP-1, TNF-α, and VEGF) in an Iranian population, including 192 smokers, comparing these values with concentrations in nonsmokers. One hundred and ninety-two cases were enrolled from the Mashhad University of Medical Sciences. Of these cases, 82 were cigarette smokers and 110 were nonsmokers. Sex and age were matched for the two groups. The serum concentration of 12 cytokines and growth factors were determined using EV-3513-cytokine-biochip arrays, by competitive chemiluminescence immunoassays. The level of serum MCP-1 was significantly ( p < .001) lower in the female group of cigarette smokers (mean = 88.1 dL/ng), compared with nonsmokers (mean = 155.6 dL/ng). There were no significant differences for the other cytokines and growth factors between the groups. Our finding demonstrate the association of MCP-1 with cigarette smoking, supporting further studies in larger population on evaluating the role of cigarette smoking on pro-/anti-inflammatory cytokines.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Hector A Cabrera-Fuentes ◽  
Klaus T Preissner ◽  
William A Boisvert

As an important component of atherosclerosis, monocytes/macrophages respond to external stimuli with rapid changes in their expression of many inflammation-related genes to undergo polarization towards the M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotype. Although sialoadhesin (Sn), also known as SIGLEC-1 or CD169, is a transmembrane protein receptor expressed on monocytes and macrophages whether it has a role in macrophage polarization and ultimately, macrophage-driven atherogenesis, has not been investigated. We have previously shown that, independently of Toll-like receptor signaling, extracellular RNA (eRNA) could exert pro-thrombotic and pro-inflammatory properties in the cardiovascular system by inducing cytokine mobilization. In the current study, recombinant mouse macrophage CSF[[Unable to Display Character: &#8211;]]driven bone marrow-derived macrophage (BMDM) differentiation was found to be skewed towards the M1 phenotype by exposure of cells to eRNA. This resulted in up-regulation of inflammatory markers, whereas anti-inflammatory genes were significantly down-regulated by eRNA. Interestingly, eRNA was released from BMDM under hypoxia and induced TNF-α liberation by activating TNF-α converting enzyme (TACE) to provoke inflammation. Conversely, TNF-α promoted eRNA release, especially under hypoxia, feeding a vicious cycle of cell damage. Administration of RNase1 or TAPI (a TACE-inhibitor) prevented the production of inflammatory mediators. Murine BMDM isolated from mice deficient in sialoadhesin had the opposite reaction to eRNA treatment with a prominent down-regulation of pro-inflammatory cytokines/M1 phenotype markers, while anti-inflammatory cytokines/M2 phenotype markers were significantly raised. In keeping with the proposed role of eRNA as a pro-inflammatory “alarm signal”, these data further shed light on the role of eRNA in macrophage function in the context of chronic inflammatory diseases such as atherosclerosis. The identification of sialoadhesin as putative eRNA recognition site on macrophages may allow further investigation of the underlying mechanisms of eRNA-macrophage interaction and related signal transduction pathways. Siglec-1 thereby may provides a new target to treat eRNA-mediated vascular diseases.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Isha S Dhande ◽  
Tahir Hussain

Macrophages have been shown to be an important contributor to the pathogenesis of hypertension and stroke. The angiotensin AT2 receptor (AT2R), which is expressed in macrophages, is known to promote vasodialation, natriuresis and lower inflammation. The goal of the present study was to explore the anti-inflammatory role of AT2R stimulation in human macrophage-like THP-1 cells activated by lipopolysaccharide (LPS). Phorbol 12-myristate 13-acetate (PMA) differentiated macrophage-like THP-1 cells were treated with AT2R agonist C21 (1 μmol/L) for 30 minutes prior to activation with LPS (1 μg/ml). Media and cells were collected after 24 hours and were analyzed for levels of pro- and anti-inflammatory cytokines and proteins. Pre-treatment with C21 resulted in a 4-fold increase (104.8±6.1 vs 406.7±52.3) in anti-inflammatory interleukin-10 (IL-10) production and a 5-fold decrease (3560±237 vs 588.8±15.94) in pro-inflammatory tumor necrosis factor-α (TNF-α) levels in the media in response to LPS. Predictably, LPS resulted in a 6-fold up-regulation of iNOS expression which was prevented with C21 pre-treatment. A modest decrease in the anti-inflammatory macrophage mannose receptor C type 2 (MRC2) expression was detected with LPS treatment. AT2R agonist pre-treatment, however, increased this receptor expression by ~70% after LPS activation. C21 alone also resulted in a 20% increase in MRC2 expression compared to untreated controls. The anti-inflammatory effect of AT2R activation was abolished in the presence of neutralizing IL-10 antibody (1 μg/ml), indicating a central role for IL-10 in mediating the beneficial response to C21 in LPS activated macrophages. Further, inhibition of nitric oxide (NO) by L-NAME prior to C21 pre-treatment also prevented the decrease in TNF-α and increase in IL-10 in response to AT2R agonist, which suggests that the anti-inflammatory response to C21 may be mediated via increase in NO production prior to LPS activation of macrophages. In conclusion, AT2R stimulation may potentially suppress the inflammatory response of macrophages to LPS by shifting the balance from pro- to anti-inflammatory cytokine production and may prove to be beneficial in the control of the inflammatory component of stroke and hypertension.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Dan Li ◽  
Chenyu Li ◽  
Yan Xu

Abstract Background and Aims Acute kidney injury (AKI), commonly appeared in cardiac arrest, surgery and kidney transplantation which involved in ischemia-reperfusion (IR) injury of kidney. However, the mechanisms underlying inflammatory response in IR AKI is still unclear. Method Public dataset showed kruppel-like factor 6 (KLF6) was significantly highly expressed (P&lt;0.05) in AKI, implies KLF6 might be associated with AKI. To evaluate the mechanism of KLF6 on IR AKI, 30 rats were randomly divided into sham and IR group, and were sacrificed at 0 h, 3 h, 6 h, 12 h or 24 h after IR. Results The results showed KLF6 expression was peaking at 6 h after IR, and the expression of pro-inflammatory cytokines MCP-1 and TNF-α were increased both in serum and kidney tissues after IR, while anti-inflammatory cytokine IL-10 was decreased after IR. Furthermore, in vitro results showed KLF6 knock-down reduced the pro-inflammatory cytokines expression and increased the anti-inflammatory cytokines expression. Conclusion These results suggest that (1) KLF6 might be a novel biomarker for early diagnosis of AKI and (2) targeting KLF6 expression may offer novel strategies to protect kidneys from IR AKI Figure KLF6, AKI, Control Inflammation


Sign in / Sign up

Export Citation Format

Share Document