scholarly journals Triptolide Downregulates the Expression of NRF2 Target Genes by Increasing Cytoplasmic Localization of NRF2 in A549 Cells

2021 ◽  
Vol 12 ◽  
Author(s):  
Le Ba Nam ◽  
Won Jun Choi ◽  
Young-Sam Keum

We have identified triptolide as a novel NRF2 inhibitor, which significantly attenuates ARE-luciferase activity at nanomolar concentrations. Triptolide did not affect the level of NRF2, but significantly inhibited the expression of NRF2 target genes in A549 cells. We found that NRF2 possesses a previously unrecognized NES in the Neh2 domain, and that triptolide promotes an interaction between NRF2 and CRM1. Triptolide also decreased nuclear accumulation of NRF2, suggesting that it promotes nuclear export of NRF2. In addition, we show that triptolide decreased the expression of NRF2 target genes and increased intracellular oxidative stress, suppressing invasion and promoting cisplatin-induced apoptosis in A549 cells. Finally, oral administration of triptolide suppressed the growth of A549 xenografts in athymic mice by decreasing the expression of NRF2 target genes and promoting oxidative damages via the nuclear export of NRF2 and CRM1 in vivo. To the best of our knowledge, triptolide is the first type of compound to inhibit NRF2 by increasing cytoplasmic localization of NRF2.

2000 ◽  
Vol 20 (23) ◽  
pp. 8845-8854 ◽  
Author(s):  
Andrew N. Billin ◽  
Alanna L. Eilers ◽  
Kathryn L. Coulter ◽  
Jennifer S. Logan ◽  
Donald E. Ayer

ABSTRACT Max is a common dimerization partner for a family of transcription factors (Myc, Mad [or Mxi]), and Mnt [or Rox] proteins) that regulate cell growth, proliferation, and apoptosis. We recently characterized a novel Max-like protein, Mlx, which interacts with Mad1 and Mad4. Here we describe the cloning and functional characterization of a new family of basic helix-loop-helix–leucine zipper heterodimeric partners for Mlx termed the Mondo family. MondoA forms homodimers weakly and does not interact with Max or members of the Myc or Mad families. MondoA and Mlx associate in vivo, and surprisingly, they are localized primarily to the cytoplasm of cultured mammalian cells. Treatment of cells with the nuclear export inhibitor leptomycin B results in the nuclear accumulation of MondoA and Mlx, demonstrating that they shuttle between the cytoplasmic and nuclear compartments rather than having exclusively cytoplasmic localization. MondoA preferentially forms heterodimers with Mlx, and this heterocomplex can bind to, and activate transcription from, CACGTG E-boxes when targeted to the nucleus via a heterologous nuclear localization signal. The amino termini of the Mondo proteins are highly conserved among family members and contain separable and autonomous cytoplasmic localization and transcription activation domains. Therefore, Mlx can mediate transcriptional repression in conjunction with the Mad family and can mediate transcriptional activation via the Mondo family. We propose that Mlx, like Max, functions as the center of a transcription factor network.


2010 ◽  
Vol 84 (23) ◽  
pp. 12210-12225 ◽  
Author(s):  
Mario A. Pennella ◽  
Yue Liu ◽  
Jennifer L. Woo ◽  
Chongwoo A. Kim ◽  
Arnold J. Berk

ABSTRACT Oncogenic transformation by adenovirus E1A and E1B-55K requires E1B-55K inhibition of p53 activity to prevent E1A-induced apoptosis. During viral infection, E1B-55K and E4orf6 substitute for the substrate-binding subunits of the host cell cullin 5 class of ubiquitin ligases, resulting in p53 polyubiquitinylation and proteasomal degradation. Here we show that E1B-55K alone also functions as an E3 SUMO1-p53 ligase. Fluorescence microscopy studies showed that E1B-55K alone, in the absence of other viral proteins, causes p53 to colocalize with E1B-55K in promyelocytic leukemia (PML) nuclear bodies, nuclear domains with a high concentration of sumoylated proteins. Photobleaching experiments with live cells revealed that E1B-55K tethering of p53 in PML nuclear bodies decreases the in vivo nuclear mobility of p53 nearly 2 orders of magnitude. E1B-55K-induced p53 sumoylation contributes to maximal inhibition of p53 function since mutation of the major p53 sumoylation site decreases E1B-55K-induced p53 sumoylation, tethering in PML nuclear bodies, and E1B-55K inhibition of p53 activity. Mutation of the E1B-55K sumoylation site greatly inhibits E1B-55K association with PML nuclear bodies and the p53 nuclear export to cytoplasmic aggresomes observed in E1A-E1B-transformed cells. Purified E1B-55K and p53 form high-molecular-weight complexes potentially through the formation of a network of E1B-55K dimers bound to the N termini of p53 tetramers. In support of this model, a p53 mutation that prevents tetramer formation greatly reduces E1B-55K-induced tethering in PML nuclear bodies and p53 nuclear export. These data indicate that E1B-55K's association with PML nuclear bodies inactivates p53 by first sequestering it in PML nuclear bodies and then greatly facilitating its nuclear export.


2007 ◽  
Vol 292 (1) ◽  
pp. G28-G38 ◽  
Author(s):  
Yanna Cao ◽  
Lu Chen ◽  
Weili Zhang ◽  
Yan Liu ◽  
Harry T. Papaconstantinou ◽  
...  

Transforming growth factor (TGF)-β-dependent apoptosis is important in the elimination of damaged or abnormal cells from normal tissues in vivo. Previously, we have shown that TGF-β inhibits the growth of rat intestinal epithelial (RIE)-1 cells. However, RIE-1 cells are relatively resistant to TGF-β-induced apoptosis due to a low endogenous Smad3-to-Akt ratio. Overexpression of Smad3 sensitizes RIE-1 cells (RIE-1/Smad3) to TGF-β-induced apoptosis by altering the Smad3-to-Akt ratio in favor of apoptosis. In this study, we utilized a genomic approach to identify potential downstream target genes that are regulated by TGF-β/Smad3. Total RNA samples were analyzed using Affymetrix oligonucleotide microarrays. We found that TGF-β regulated 518 probe sets corresponding to its target genes. Interestingly, among the known apoptotic genes included in the microarray analyses, only caspase-3 was induced, which was confirmed by real-time RT-PCR. Furthermore, TGF-β activated caspase-3 through protein cleavage. Upstream of caspase-3, TGF-β induced mitochondrial depolarization, cytochrome c release, and cleavage of caspase-9, which suggests that the intrinsic apoptotic pathway mediates TGF-β-induced apoptosis in RIE-1/Smad3 cells.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 693 ◽  
Author(s):  
Sébastien Dupasquier ◽  
Philippe Blache ◽  
Laurence Picque Lasorsa ◽  
Han Zhao ◽  
Jean-Daniel Abraham ◽  
...  

Inactivating mutations of the tumor suppressor Adenomatosis Polyposis Coli (APC), which are found in familial adenomatosis polyposis and in 80% of sporadic colorectal cancers (CRC), result in constitutive activation of the Wnt/β-catenin pathway and tumor development in the intestine. These mutations disconnect the Wnt/β-catenin pathway from its Wnt extracellular signal by inactivating the APC/GSK3-β/axin destruction complex of β-catenin. This results in sustained nuclear accumulation of β-catenin, followed by β-catenin-dependent co-transcriptional activation of Wnt/β-catenin target genes. Thus, mechanisms acting downstream of APC, such as those controlling β-catenin stability and/or co-transcriptional activity, are attractive targets for CRC treatment. Protein Kinase C-α (PKCα) phosphorylates the orphan receptor RORα that then inhibits β-catenin co-transcriptional activity. PKCα also phosphorylates β-catenin, leading to its degradation by the proteasome. Here, using both in vitro (DLD-1 cells) and in vivo (C57BL/6J mice) PKCα knock-in models, we investigated whether enhancing PKCα function could be beneficial in CRC treatment. We found that PKCα is infrequently mutated in CRC samples, and that inducing PKCα function is not deleterious for the normal intestinal epithelium. Conversely, di-terpene ester-induced PKCα activity triggers CRC cell death. Together, these data indicate that PKCα is a relevant drug target for CRC treatment.


1999 ◽  
Vol 19 (9) ◽  
pp. 6318-6322 ◽  
Author(s):  
Takeshi Kawamoto ◽  
Tatsuya Sueyoshi ◽  
Igor Zelko ◽  
Rick Moore ◽  
Kimberly Washburn ◽  
...  

ABSTRACT The constitutively active receptor (CAR) transactivates a distal enhancer called the phenobarbital (PB)-responsive enhancer module (PBREM) found in PB-inducible CYP2B genes. CAR dramatically increases its binding to PBREM in livers of PB-treated mice. We have investigated the cellular mechanism of PB-induced increase of CAR binding. Western blot analyses of mouse livers revealed an extensive nuclear accumulation of CAR following PB treatment. Nuclear contents of CAR perfectly correlate with an increase of CAR binding to PBREM. PB-elicited nuclear accumulation of CAR appears to be a general step regulating the induction of CYP2B genes, since treatments with other PB-type inducers result in the same nuclear accumulation of CAR. Both immunoprecipitation and immunohistochemistry studies show cytoplasmic localization of CAR in the livers of nontreated mice, indicating that CAR translocates into nuclei following PB treatment. Nuclear translocation of CAR also occurs in mouse primary hepatocytes but not in hepatocytes treated with the protein phosphatase inhibitor okadaic acid. Thus, the CAR-mediated transactivation of PBREM in vivo becomes PB responsive through an okadaic acid-sensitive nuclear translocation process.


Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1981-1992 ◽  
Author(s):  
Winnie F. Tam ◽  
Ting-Lei Gu ◽  
Jing Chen ◽  
Benjamin H. Lee ◽  
Lars Bullinger ◽  
...  

Abstract Oncogenic tyrosine kinases, such as BCR-ABL, TEL-ABL, TEL-PDGFβR, and FLT3-ITD, play a major role in the development of hematopoietic malignancy. They activate many of the same signal transduction pathways. To identify the critical target genes required for transformation in hematopoietic cells, we used a comparative gene expression strategy in which selective small molecules were applied to 32Dcl3 cells that had been transformed to factor-independent growth by these respective oncogenic alleles. We identified inhibitor of DNA binding 1 (Id1), a gene involved in development, cell cycle, and tumorigenesis, as a common target of these oncogenic kinases. These findings were prospectively confirmed in cell lines and primary bone marrow cells engineered to express the respective tyrosine kinase alleles and were also confirmed in vivo in murine models of disease. Moreover, human AML cell lines Molm-14 and K562, which express the FLT3-ITD and BCR-ABL tyrosine kinases, respectively, showed high levels of Id1 expression. Antisense and siRNA based knockdown of Id1-inhibited growth of these cells associated with increased p27Kip1 expression and increased sensitivity to Trail-induced apoptosis. These findings indicate that Id1 is an important target of constitutively activated tyrosine kinases and may be a therapeutic target for leukemias associated with oncogenic tyrosine kinases.


2004 ◽  
Vol 164 (3) ◽  
pp. 395-405 ◽  
Author(s):  
Hiroshi Akazawa ◽  
Sumiyo Kudoh ◽  
Naoki Mochizuki ◽  
Noboru Takekoshi ◽  
Hiroyuki Takano ◽  
...  

The cardiac homeobox transcription factor CSX/NKX2-5 plays an important role in vertebrate heart development. Using a yeast two-hybrid screening, we identified a novel LIM domain–containing protein, named CSX-associated LIM protein (Cal), that interacts with CSX/NKX2-5. CSX/NKX2-5 and Cal associate with each other both in vivo and in vitro, and the LIM domains of Cal and the homeodomain of CSX/NKX2-5 were necessary for mutual binding. Cal itself possessed the transcription-promoting activity, and cotransfection of Cal enhanced CSX/NKX2-5–induced activation of atrial natriuretic peptide gene promoter. Cal contained a functional nuclear export signal and shuttled from the cytoplasm into the nucleus in response to calcium. Accumulation of Cal in the nucleus of P19CL6 cells promoted myocardial cell differentiation accompanied by increased expression levels of the target genes of CSX/NKX2-5. These results suggest that a novel LIM protein Cal induces cardiomyocyte differentiation through its dynamic intracellular shuttling and association with CSX/NKX2-5.


2020 ◽  
Author(s):  
Yong Huang ◽  
Liping Zhong ◽  
Zhiming Deng ◽  
Pan Wu ◽  
Jian He ◽  
...  

Abstract In this study we show for the first time that a reduced graphene oxide (rGO) carrier has a 15-fold higher catalysis rate than graphene oxide (GO) in Ag+ reduction. Based on this, we constructed a tumor microenvironment-enabled in situ silver-based electrochemical oncolytic bioreactor (SEOB) which unlocked an Ag+ prodrug to generate silver nanoparticles and inhibited the growth of various tumors. In this bioreactor system, intratumoral H2O2 acted as the reductant and the rGO carrier acted as the catalyst. Chelation of aptamers to this prodrug increased the production of silver nanoparticles by tumor cells, especially in the presence of Vitamin C, which broke down in tumor cells to supply massive amounts of H2O2. Consequently, highly efficient silver nanoparticle-induced apoptosis was observed in HepG2 and A549 cells in vitro and in HepG2- and A549-derived tumors in vivo. The apoptosis was associated with ROS-induced changes in mitochondrial membrane potential and DNA damage. The specific aptamer targeting and intratumoral silver nanoparticle production guaranteed excellent biosafety, with no damage to normal cells, because the Ag+ prodrug was specifically unlocked in tumors. More significantly, there was no evident tissue damage in monkeys, which greatly increases the clinical translation potential of the SEOB system.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Zuzana Broskova ◽  
Kyoung-mi Park ◽  
Yongchao Wang ◽  
Il-man Kim

Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs), small non-coding RNAs that post-transcriptionally regulate target genes. For example, miR-125a is up-regulated in patients with heart failure (HF), while miR-125b is down-regulated in patients with end-stage dilated cardiomyopathy (DCM) and ischemic DCM. Circulating levels of these two miRs have been recently proposed as potential biomarkers of HF. We previously showed that β1-adrenergic receptor-mediated cardioprotective signaling through β-arrestin1 stimulates the processing of miR-125a and miR-125b in mouse heart (Figure A-C). Here, we hypothesize that these two miRs might confer cardioprotection against ischemic injury. Using cultured cardiomyocyte (CM) and in vivo approaches, we show that these miRs are ischemic stress-responsive protectors against CM apoptosis. CMs lacking miR-125a or miR-125b have an increased sensitivity to stress-induced apoptosis, while CMs overexpressing miR-125a or miR-125b have increased phospho-AKT pro-survival signaling. Moreover, we demonstrate that loss-of-function of miR-125b in mouse heart causes abnormalities in cardiac structure and function after myocardial infarction. The cardioprotective roles of the two miRs during ischemic injury are in part attributed to direct repression of the pro-apoptotic genes Bak1 and Klf13 in CMs (Figure D). In conclusion, these findings reveal pivotal roles for miR-125a and miR-125b as important regulators of CM survival during cardiac injury.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1533-1533
Author(s):  
David T Yang ◽  
Shelly Wuerzberger-Davis ◽  
Yuhong Chen ◽  
Mei Yu ◽  
Hu Zeng ◽  
...  

Abstract Activity of the nuclear factor-κB (NF-κB) family of transcription factors is tightly regulated by its inhibitor, IκBα, through cytoplasmic localization of latent NF-κB: IκBα complexes. This arrangement is essential for efficient signal-inducible activation and regulation of biologic functions. Maintenance of cytoplasmic localization of latent NF-κB: IκBα complex requires continuous nuclear export that is dependent on the N-terminal nuclear export sequence (N-NES) of IκBα. While these mechanisms have been elucidated through in vitro studies, the biological significance of this “nucleocytoplasmic shuttling” has yet to be evaluated in vivo. To address this, we derived mice harboring germ-line M45A, L48A, and I52A amino acid substitutions in the N-NES of IκBα. In splenic B-cells, the disrupted N-NES caused constitutive nuclear accumulation of IκBα and inactive c-Rel containing complexes but surprisingly not IκBα: p65 complexes. Since p65 contains a NES sequence and c-Rel does not, nuclear export of N-NES mutant IκBα:NF-κB complexes appear to be NF-κB family member dependent. Functionally, NF-κB activity in splenic B-cells after stimulation with IgM or LPS was clearly reduced in the mutants compared to wild-type by electrophoretic mobility shift assay. B-cell development in the bone marrow of mice harboring the mutation was impaired, showing a preponderance of pro/pre B-cells and few mature B-cells compared to their wild type littermates (p < 0.001). Concordantly, there were significantly fewer B-cells in the spleen (p < 0.05) and lymph nodes (p < 0.01) of the mutant mice. Additionally, populations of T2, follicular (FO), and marginal zone (MZ) B-cells, which represent mature B-cells in the spleen, were also reduced in the mutant mice (p < 0.001). To demonstrate that this B-cell maturation defect in IκBα mutant mice was B-cell intrinsic, sublethally irradiated Jak3-deficient mice were transplanted with BM from either wild-type or mutant mice. B-cell development in mice transplanted with mutant donors was impaired relative to those with wild-type donors in a fashion identical to that of the primary mutants described above. Finally, severe phenotypes in inguinal lymph nodes and Peyer’s patch development were present, with mutant mice frequently lacking these secondary organs/tissues, the underlying mechanisms of which are currently being investigated. In conclusion, our findings uncover an in vivo mechanism controlling NF-κB localization and its essential role in the generation of mature B-cells and certain secondary lymphoid organs.


Sign in / Sign up

Export Citation Format

Share Document