scholarly journals Arecoline Enhances Phosphodiesterase 4A Activity to Promote Transforming Growth Factor-β-Induced Buccal Mucosal Fibroblast Activation via cAMP-Epac1 Signaling Pathway

2021 ◽  
Vol 12 ◽  
Author(s):  
Bo Zhang ◽  
Lihua Gao ◽  
Chunsheng Shao ◽  
Mingsi Deng ◽  
Liangjian Chen

Chewing areca nut (betel quid) is strongly associated with oral submucous fibrosis (OSF), a pre-cancerous lesion. Among the areca alkaloids, arecoline is the main agent responsible for fibroblast proliferation; however, the specific molecular mechanism of arecoline affecting the OSF remains unclear. The present study revealed that arecoline treatment significantly enhanced Transforming growth factor-β (TGF-β)-induced buccal mucosal fibroblast (BMF) activation and fibrotic changes. Arecoline interacts with phosphodiesterase 4A (PDE4A) to exert its effects through modulating PDE4A activity but not PDE4A expression. PDE4A silence reversed the effects of arecoline on TGF-β-induced BMFs activation and fibrotic changes. Moreover, the exchange protein directly activated by cAMP 1 (Epac1)-selective Cyclic adenosine 3′,5′-monophosphate (cAMP) analog (8-Me-cAMP) but not the protein kinase A (PKA)-selective cAMP analog (N6-cAMP) remarkably suppressed α-smooth muscle actin(α-SMA) and Collagen Type I Alpha 1 Chain (Col1A1) protein levels in response to TGF-β1 and arecoline co-treatment, indicating that cAMP-Epac1 but not cAMP-PKA signaling is involved in arecoline functions on TGF-β1-induced BMFs activation. In conclusion, arecoline promotes TGF-β1-induced BMFs activation through enhancing PDE4A activity and the cAMP-Epac1 signaling pathway during OSF. This novel mechanism might provide more powerful strategies for OSF treatment, requiring further in vivo and clinical investigation.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Lai-Ming Yung ◽  
Samuel D Paskin-Flerlage ◽  
Ivana Nikolic ◽  
Scott Pearsall ◽  
Ravindra Kumar ◽  
...  

Introduction: Excessive Transforming Growth Factor-β (TGF-β) signaling has been implicated in pulmonary arterial hypertension (PAH), based on activation of TGF-β effectors and transcriptional targets in affected lungs and the ability of TGF-β type I receptor (ALK5) inhibitors to improve experimental PAH. However, clinical use of ALK5 inhibitors has been limited by cardiovascular toxicity. Hypothesis: We tested whether or not selective blockade of TGF-β and Growth Differentiation Factor (GDF) ligands using a recombinant TGFβ type II receptor extracellular domain Fc fusion protein (TGFBRII-Fc) could impact experimental PAH. Methods: Male SD rats were injected with monocrotaline (MCT) and received vehicle or TGFBRII-Fc (15 mg/kg, twice per week, i.p.). C57BL/6 mice were treated with SU-5416 and hypoxia (SUGEN-HX) and received vehicle or TGFBRII-Fc. RNA-Seq was used to profile transcriptional changes in lungs of MCT rats. Circulating levels of GDF-15 were measured in 241 PAH patients and 41 healthy controls. Human pulmonary artery smooth muscle cells were used to examine signaling in vitro . Results: TGFBRII-Fc is a selective ligand trap, inhibiting the ability of GDF-15, TGF-β1, TGF-β3, but not TGF-β2 to activate SMAD2/3 in vitro . In MCT rats, prophylactic treatment with TGFBRII-Fc normalized expression of TGF-β transcriptional target PAI-1, attenuated PAH and vascular remodeling. Delayed administration of TGFBRII-Fc in rats with established PAH at 2.5 weeks led to improved survival, decreased PAH and remodeling at 5 weeks. Similar findings were observed in SUGEN-HX mice. No valvular abnormalities were found with TGFBRII-Fc treatment. RNA-Seq revealed GDF-15 to be the most highly upregulated TGF-β ligand in the lungs of MCT rats, with only modest increases in TGF-β1 and no change in TGF-β2/3 observed, suggesting a dominant role of GDF-15 in the pathophysiology of this model. Plasma levels of GDF-15 were significantly increased in patients with diverse etiologies of WHO Group I PAH. Conclusions: These findings demonstrate that a selective TGF-β/GDF-15 trap attenuates experimental PAH, remodeling and mortality, without causing valvulopathy. These data highlight the potential role of GDF-15 as a pathogenic molecule and therapeutic target in PAH.


Pharmacology ◽  
2019 ◽  
Vol 104 (1-2) ◽  
pp. 81-89 ◽  
Author(s):  
Jing Liu ◽  
Tan Deng ◽  
Yaxin Wang ◽  
Mengmeng Zhang ◽  
Guannan Zhu ◽  
...  

Background: Intestinal fibrosis is the major complication of Crohn’s disease (CD). There are no other good treatments for CD except surgery and remains a refractory disease. Calycosin (CA), the active component of astragalus membranaceus, has been reported the potential effect on lung fibrosis and renal fibrosis. In this study, we aim to explore the effect of CA on intestinal fibrosis in vitro and the possible signal pathway. Methods: The antifibrotic effect of CA is investigated in human intestinal fibroblasts (CCD-18Co) cells induced by transforming growth factor-β1 (TGF-β1). MTT method was used to screen the concentration of CA. Real-time polymerase chain reaction and western blot analysis were used to evaluate the expression of α-smooth muscle actin (α-SMA), collagen I, and TGF-β/Smad pathway. Results: The results showed that the concentration of CA was 12.5, 25, 50 μmol/L. CA could inhibit the expression of α-SMA and collagen I. In addition, CA regulated the expression of TGF-β/Smad signaling pathway. Conclusion: This study demonstrated that CA could inhibit the activation of CCD-18Co cells and reduce the expression of extracellular matrix. Our study highlighted that CA-inhibited TGF-β/Smad pathway through inhibiting the expression of p-Smad2, p-Smad3, Smad4, and TGF-β1 and raised the Smad7 expression. Therefore, CA might inhibit intestinal fibrosis by inhibiting the TGF-β/Smad pathway.


2019 ◽  
Vol 316 (3) ◽  
pp. H596-H608 ◽  
Author(s):  
Rachel C. Childers ◽  
Ian Sunyecz ◽  
T. Aaron West ◽  
Mary J. Cismowski ◽  
Pamela A. Lucchesi ◽  
...  

Hemodynamic load regulates cardiac remodeling. In contrast to pressure overload (increased afterload), hearts subjected to volume overload (VO; preload) undergo a distinct pattern of eccentric remodeling, chamber dilation, and decreased extracellular matrix content. Critical profibrotic roles of cardiac fibroblasts (CFs) in postinfarct remodeling and in response to pressure overload have been well established. Little is known about the CF phenotype in response to VO. The present study characterized the phenotype of primary cultures of CFs isolated from hearts subjected to 4 wk of VO induced by an aortocaval fistula. Compared with CFs isolated from sham hearts, VO CFs displayed a “hypofibrotic” phenotype, characterized by a ~50% decrease in the profibrotic phenotypic markers α-smooth muscle actin, connective tissue growth factor, and collagen type I, despite increased levels of profibrotic transforming growth factor-β1 and an intact canonical transforming growth factor-β signaling pathway. Actin filament dynamics were characterized, which regulate the CF phenotype in response to biomechanical signals. Actin polymerization was determined by the relative amounts of G-actin monomers versus F-actin. Compared with sham CFs, VO CFs displayed ~78% less F-actin and an increased G-actin-to-F-actin ratio (G/F ratio). In sham CFs, treatment with the Rho kinase inhibitor Y-27632 to increase the G/F ratio resulted in recapitulation of the hypofibrotic CF phenotype observed in VO CFs. Conversely, treatment of VO CFs with jasplakinolide to decrease the G/F ratio restored a more profibrotic response (>2.5-fold increase in α-smooth muscle actin, connective tissue growth factor, and collagen type I). NEW & NOTEWORTHY The present study is the first to describe a “hypofibrotic” phenotype of cardiac fibroblasts isolated from a volume overload model. Our results suggest that biomechanical regulation of actin microfilament stability and assembly is a critical mediator of cardiac fibroblast phenotypic modulation.


2007 ◽  
Vol 51 (8) ◽  
pp. 2905-2910 ◽  
Author(s):  
Mariana C. Waghabi ◽  
Michelle Keramidas ◽  
Claudia M. Calvet ◽  
Marcos Meuser ◽  
Maria de Nazaré C. Soeiro ◽  
...  

ABSTRACT The antiinflammatory cytokine transforming growth factor β (TGF-β) plays an important role in Chagas disease, a parasitic infection caused by the protozoan Trypanosoma cruzi. In the present study, we show that SB-431542, an inhibitor of the TGF-β type I receptor (ALK5), inhibits T. cruzi-induced activation of the TGF-β pathway in epithelial cells and in cardiomyocytes. Further, we demonstrate that addition of SB-431542 greatly reduces cardiomyocyte invasion by T. cruzi. Finally, SB-431542 treatment significantly reduces the number of parasites per infected cell and trypomastigote differentiation and release. Taken together, these data further confirm the major role of the TGF-β signaling pathway in both T. cruzi infection and T. cruzi cell cycle completion. Our present data demonstrate that small inhibitors of the TGF-β signaling pathway might be potential pharmacological tools for the treatment of Chagas disease.


2020 ◽  
Vol 295 (36) ◽  
pp. 12559-12572
Author(s):  
Kazuki Takahashi ◽  
Yuichi Akatsu ◽  
Katarzyna A. Podyma-Inoue ◽  
Takehisa Matsumoto ◽  
Hitomi Takahashi ◽  
...  

Tumor progression is governed by various growth factors and cytokines in the tumor microenvironment (TME). Among these, transforming growth factor-β (TGF-β) is secreted by various cell types residing in the TME and promotes tumor progression by inducing the epithelial-to-mesenchymal transition (EMT) of cancer cells and tumor angiogenesis. TGF-β comprises three isoforms, TGF-β1, -β2, and -β3, and transduces intracellular signals via TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII). For the purpose of designing ligand traps that reduce oncogenic signaling in the TME, chimeric proteins comprising the ligand-interacting ectodomains of receptors fused with the Fc portion of immunoglobulin are often used. For example, chimeric soluble TβRII (TβRII-Fc) has been developed as an effective therapeutic strategy for targeting TGF-β ligands, but several lines of evidence indicate that TβRII-Fc more effectively traps TGF-β1 and TGF-β3 than TGF-β2, whose expression is elevated in multiple cancer types. In the present study, we developed a chimeric TGF-β receptor containing both TβRI and TβRII (TβRI-TβRII-Fc) and found that TβRI-TβRII-Fc trapped all TGF-β isoforms, leading to inhibition of both the TGF-β signal and TGF-β–induced EMT of oral cancer cells, whereas TβRII-Fc failed to trap TGF-β2. Furthermore, we found that TβRI-TβRII-Fc suppresses tumor growth and angiogenesis more effectively than TβRII-Fc in a subcutaneous xenograft model of oral cancer cells with high TGF-β expression. These results suggest that TβRI-TβRII-Fc may be a promising tool for targeting all TGF-β isoforms in the TME.


2003 ◽  
Vol 23 (20) ◽  
pp. 7230-7242 ◽  
Author(s):  
A. Rebbapragada ◽  
H. Benchabane ◽  
J. L. Wrana ◽  
A. J. Celeste ◽  
L. Attisano

ABSTRACT Myostatin, a transforming growth factor β (TGF-β) family member, is a potent negative regulator of skeletal muscle growth. In this study we characterized the myostatin signal transduction pathway and examined its effect on bone morphogenetic protein (BMP)-induced adipogenesis. While both BMP7 and BMP2 activated transcription from the BMP-responsive I-BRE-Lux reporter and induced adipogenic differentiation, myostatin inhibited BMP7- but not BMP2-mediated responses. To dissect the molecular mechanism of this antagonism, we characterized the myostatin signal transduction pathway. We showed that myostatin binds the type II Ser/Thr kinase receptor. ActRIIB, and then partners with a type I receptor, either activin receptor-like kinase 4 (ALK4 or ActRIB) or ALK5 (TβRI), to induce phosphorylation of Smad2/Smad3 and activate a TGF-β-like signaling pathway. We demonstrated that myostatin prevents BMP7 but not BMP2 binding to its receptors and that BMP7-induced heteromeric receptor complex formation is blocked by competition for the common type II receptor, ActRIIB. Thus, our results reveal a strikingly specific antagonism of BMP7-mediated processes by myostatin and suggest that myostatin is an important regulator of adipogenesis.


2007 ◽  
Vol 75 (4) ◽  
pp. 1878-1885 ◽  
Author(s):  
Boniface Namangala ◽  
Chihiro Sugimoto ◽  
Noboru Inoue

ABSTRACT The socioeconomic implications of trypanosomosis in sub-Saharan Africa and the limitations of its current control regimes have stimulated research into alternative control methods. Considering the pro- and anti-inflammatory properties of transforming growth factor β1 (TGF-β1) and its potential to enhance immunity against protozoan parasites, we examined the effects of intraperitoneally delivered TGF-β1 in C57BL/6 mice infected with Trypanosoma congolense, the hemoprotozoan parasite causing nagana in cattle. A triple dose of 10 ng TGF-β1 significantly reduced the first parasitemic peak and delayed mortality of infected mice. Furthermore, exogenous TGF-β1 significantly decreased the development of trypanosome-induced anemia and splenomegaly. The apparent TGF-β1-induced antitrypanosome protection, occurring mainly during the early stage of infection, correlated with an enhanced parasite antigen-specific Th1 cell response characterized by a skewed type I cytokine response and a concomitant stronger antitrypanosome immunoglobulin G2a antibody response. Infected TGF-β1-pretreated mice exhibited a significant reduction in the trypanosome-induced hyperexpansion of B cells. Furthermore, evidence is provided herein that exogenous TGF-β1 activates macrophages that may contribute to parasite control. Collectively, these data indicate that exogenous TGF-β1 is immunostimulative, inducing partial protection against T. congolense infection, possibly through mechanisms involving innate immune responses.


2013 ◽  
Vol 5 (196) ◽  
pp. 196ra100-196ra100 ◽  
Author(s):  
Anton Gisterå ◽  
Anna-Karin L. Robertson ◽  
John Andersson ◽  
Daniel F. J. Ketelhuth ◽  
Olga Ovchinnikova ◽  
...  

Adaptive immunity has a major impact on atherosclerosis, with pro- and anti-atherosclerotic effects exerted by different subpopulations of T cells. Transforming growth factor–β (TGF-β) may promote development either of anti-atherosclerotic regulatory T cells or of T helper 17 (TH17) cells, depending on factors in the local milieu. We have addressed the effect on atherosclerosis of enhanced TGF-β signaling in T cells. Bone marrow from mice with a T cell–specific deletion ofSmad7, a potent inhibitor of TGF-β signaling, was transplanted into hypercholesterolemicLdlr−/−mice.Smad7-deficient mice had significantly larger atherosclerotic lesions that contained large collagen-rich caps, consistent with a more stable phenotype. The inflammatory cytokine interleukin-6 (IL-6) was expressed in the atherosclerotic aorta, and increased mRNA for IL-17A and the TH17-specific transcription factor RORγt were detected in draining lymph nodes. TreatingSmad7-deficient chimeras with neutralizing IL-17A antibodies reversed stable cap formation. IL-17A stimulated collagen production by human vascular smooth muscle cells, and RORγt mRNA correlated positively with collagen type I and α-smooth muscle actin mRNA in a biobank of human atherosclerotic plaques. These data link IL-17A to induction of a stable plaque phenotype, could lead to new plaque-stabilizing therapies, and should prompt an evaluation of cardiovascular events in patients treated with IL-17 receptor blockade.


2006 ◽  
Vol 80 (24) ◽  
pp. 12420-12424 ◽  
Author(s):  
Jose-Andres Mendoza ◽  
Yves Jacob ◽  
Patricia Cassonnet ◽  
Michel Favre

ABSTRACT Mechanisms of cellular transformation associated with human papillomavirus type 5 (HPV5), which is responsible for skin carcinomas in epidermodysplasia verruciformis (EV) patients, are poorly understood. Using a yeast two-hybrid screening and molecular and cellular biology experiments, we found that HPV5 oncoprotein E6 interacts with SMAD3, a key component in the transforming growth factor β1 (TGF-β1) signaling pathway. HPV5 E6 inhibits SMAD3 transactivation by destabilizing the SMAD3/SMAD4 complex and inducing the degradation of both proteins. Interestingly, the E6 protein of nononcogenic EV HPV9 failed to interact with SMAD3, suggesting that downregulation of the TGF-β1 signaling pathway could be a determinant in HPV5 skin carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document