scholarly journals Physalin A Inhibits MAPK and NF-κB Signal Transduction Through Integrin αVβ3 and Exerts Chondroprotective Effect

2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Lu ◽  
Xiaojun Yu ◽  
Shuang Liang ◽  
Peng Cheng ◽  
Zhenggang Wang ◽  
...  

Osteoarthritis (OA) is a common articular ailment presented with cartilage loss and destruction that is common observed in the elderly population. Physalin A (PA), a natural bioactive withanolide, exerts anti-inflammatory residences in more than a few diseases; however, little is known about its efficacy for OA treatment. Here, we explored the therapeutic effects and potential mechanism of PA in mouse OA. After the in vitro administration of PA, the expression of inflammation indicators including inducible nitric oxide synthase and cyclooxygenase-2 was low, indicating that PA could alleviate the IL-1β-induced chondrocyte inflammation response. Moreover, PA reduced IL-1β-induced destruction of the extracellular matrix by upregulating the gene expression of anabolism factors, including collagen II, aggrecan, and sry-box transcription factor 9, and downregulating the gene expression of catabolic factors, including thrombospondin motif 5 and matrix metalloproteinases. In addition, the chondroprotective effect of PA was credited to the inhibition of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. Furthermore, in vivo experiments showed that intra-articular injection of PA could alleviate cartilage destruction in a mouse OA model. However, the anti-inflammatory, anabolism enhancing, catabolism inhibiting, and MAPK and NF-κB signaling pathway inhibiting properties of PA on IL-1β-induced chondrocytes could be reversed when integrin αVβ3 is knocked down by siRNA. In conclusion, our work demonstrates that PA exhibits a chondroprotective effect that may be mediated by integrin αVβ3. Thus, PA or integrin αVβ3 might be a promising agent or molecular target for the treatment of OA.

Blood ◽  
2003 ◽  
Vol 101 (2) ◽  
pp. 729-738 ◽  
Author(s):  
Dominique Berrebi ◽  
Stefano Bruscoli ◽  
Nicolas Cohen ◽  
Arnaud Foussat ◽  
Graziella Migliorati ◽  
...  

Glucocorticoids and interleukin 10 (IL-10) prevent macrophage activation. In murine lymphocytes, glucocorticoids induce expression of glucocorticoid-induced leucine zipper (GILZ), which prevents the nuclear factor κB (NF-κB)–mediated activation of transcription. We investigated whether GILZ could account for the deactivation of macrophages by glucocorticoids and IL-10. We found that GILZ was constitutively produced by macrophages in nonlymphoid tissues of humans and mice. Glucocorticoids and IL-10 stimulated the production of GILZ by macrophages both in vitro and in vivo. Transfection of the macrophagelike cell line THP-1 with the GILZ gene inhibited the expression of CD80 and CD86 and the production of the proinflammatory chemokines regulated on activation normal T-cell expressed and secreted (CCL5) and macrophage inflammatory protein 1α (CCL3). It also prevented toll-like receptor 2 production induced by lipopolysaccharide, interferonγ, or an anti-CD40 mAb, as well as NF-κB function. In THP-1 cells treated with glucocorticoids or IL-10, GILZ was associated with the p65 subunit of NF-κB. Activated macrophages in the granulomas of patients with Crohn disease or tuberculosis do not produce GILZ. In contrast, GILZ production persists in tumor-infiltrating macrophages in Burkitt lymphomas. Therefore, GILZ appears to play a key role in the anti-inflammatory and immunosuppressive effects of glucocorticoids and IL-10. Glucocorticoid treatment stimulates GILZ production, reproducing an effect of IL-10, a natural anti-inflammatory agent. The development of delayed-type hypersensitivity reactions is associated with the down-regulation of GILZ gene expression within lesions. In contrast, the persistence of GILZ gene expression in macrophages infiltrating Burkitt lymphomas may contribute to the failure of the immune system to reject the tumor.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 696
Author(s):  
Ji Min Lee ◽  
Jung Wook Hwang ◽  
Mi Jin Kim ◽  
Sang Youn Jung ◽  
Kyung-Soo Kim ◽  
...  

Tendinopathy is a common musculoskeletal condition causing pain and dysfunction. Conventional treatment and surgical procedures for tendinopathy are insufficient; accordingly, recent research has focused on tendon-healing regenerative approaches. Tendon injuries usually occur in the hypoxic critical zone, characterized by increased oxidative stress and mitochondrial dysfunction; thus, exogenous intact mitochondria may be therapeutic. We aimed to assess whether mitochondrial transplantation could induce anti-inflammatory activity and modulate the metabolic state of a tendinopathy model. Exogenous mitochondria were successfully delivered into damaged tenocytes by centrifugation. Levels of Tenomodulin and Collagen I in damaged tenocytes were restored with reductions in nuclear factor-κB and matrix metalloproteinase 1. The dysregulation of oxidative stress and mitochondrial membrane potential was attenuated by mitochondrial transplantation. Activated mitochondrial fission markers, such as fission 1 and dynamin-related protein 1, were dose-dependently downregulated. Apoptosis signaling pathway proteins were restored to the pre-damage levels. Similar changes were observed in a collagenase injection-induced rat model of tendinopathy. Exogenous mitochondria incorporated into the Achilles tendon reduced inflammatory and fission marker levels. Notably, collagen production was restored. Our results demonstrate the therapeutic effects of direct mitochondrial transplantation in tendinopathy. These effects may be explained by alterations in anti-inflammatory and apoptotic processes via changes in mitochondrial dynamics.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1343
Author(s):  
Balaji Venkataraman ◽  
Saeeda Almarzooqi ◽  
Vishnu Raj ◽  
Abdullah T. Alhassani ◽  
Ahmad S. Alhassani ◽  
...  

Inflammatory bowel diseases (IBD) are chronic inflammatory disorders with increasing incidence and prevalence worldwide. Here, we investigated thymoquinone (TQ), a naturally occurring phytochemical present in Nigella sativa, for anti-inflammatory effects in colonic inflammation. To address this, we used in vivo (mice) and in vitro (HT-29 cells) models in this investigation. Our results showed that TQ treatment significantly reduced the disease activity index (DAI), myeloperoxidase (MPO) activity, and protected colon microscopic architecture. In addition, TQ also reduced the expression of proinflammatory cytokines and mediators at both the mRNA and protein levels. Further, TQ decreased phosphorylation of the activated mitogen-activated protein kinase (MAPK) signaling pathway and nuclear factor kappa B (NF-κB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. TQ significantly decreased proinflammatory chemokines (CXCL-1 and IL-8), and mediator (COX-2) mRNA expression in HT-29 cells treated with TNF-α. TQ also increased HT-29 PPAR-γ mRNA, PPAR-γ protein expression, and PPAR-γ promoter activity. These results indicate that TQ inhibits MAPK and NF-κB signaling pathways and transcriptionally regulates PPAR-γ expression to induce potent anti-inflammatory activity in vivo and in vitro models of colon inflammation.


2017 ◽  
Vol 45 (04) ◽  
pp. 847-861 ◽  
Author(s):  
Chia-Yang Li ◽  
Katsuhiko Suzuki ◽  
Yung-Li Hung ◽  
Meng-Syuan Yang ◽  
Chung-Ping Yu ◽  
...  

Aloe, a polyphenolic anthranoid-containing Aloe vera leaves, is a Chinese medicine and a popular dietary supplement worldwide. In in vivo situations, polyphenolic anthranoids are extensively broken down into glucuronides and sulfate metabolites by the gut and the liver. The anti-inflammatory potential of aloe metabolites has not been examined. The aim of this study was to investigate the anti-inflammatory effects of aloe metabolites from in vitro (lipopolysaccharides (LPS)-activated RAW264.7 macrophages) and ex vivo (LPS-activated peritoneal macrophages) to in vivo (LPS-induced septic mice). The production of proinflammatory cytokines (TNF-[Formula: see text] and IL-12) and NO was determined by ELISA and Griess reagents, respectively. The expression levels of iNOS and MAPKs were analyzed by Western blot. Our results showed that aloe metabolites inhibited the expression of iNOS, decreased the production of TNF-[Formula: see text], IL-12, and NO, and suppressed the phosphorylation of MAPKs by LPS-activated RAW264.7 macrophages. In addition, aloe metabolites reduced the production of NO, TNF-[Formula: see text] and IL-12 by murine peritoneal macrophages. Furthermore, aloe administration significantly reduced the NO level and exhibited protective effects against sepsis-related death in LPS-induced septic mice. These results suggest that aloe metabolites exerted anti-inflammatory effects in vivo, and that these effects were associated with the inhibition of inflammatory mediators. Therefore, aloe could be considered an effective therapeutic agent for the treatment of sepsis.


2005 ◽  
Vol 33 (4) ◽  
pp. 701-704 ◽  
Author(s):  
K. Kashfi ◽  
B. Rigas

Nitric-oxide-donating aspirin (NO-ASA), consisting of ASA (aspirin) plus an -ONO2 moiety linked to it via a molecular spacer, is a new drug for cancer prevention. NO-ASA seems to overcome the low potency and toxicity of traditional ASA. The -ONO2 moiety is responsible for releasing NO, and it appears to be required for biological activity. In studies in vitro, NO-ASA inhibits the growth of colon, pancreatic, prostate, lung, skin, leukaemia and breast cancer cells, and is up to 6000-fold more potent than traditional ASA. This effect is owing to cell kinetics [inhibition of proliferation, induction of apoptosis (multiple criteria) and blocking the G1 to S cell-cycle transition] and cell signalling [inhibition of Wnt signalling (IC50=0.2 μM), inhibition of NF-κB (nuclear factor κB) activation (IC50=7.5 μM), inhibition of nitric oxide synthase-2 expression (IC50=48 μM), inhibition of MAPK (mitogen-activated protein kinase) signalling (IC50=10 μM) and induction of cyclo-oxygenase-2 at approx. 10 μM]. In studies in vivo, NO-ASA inhibits intestinal carcinogenesis in Min mice (tumour multiplicity was reduced by 59% after 3 weeks, with no effect in control animals and no side effects) and in the N-nitrosobis(2-oxopropyl)amine model of pancreatic cancer, where there was an 89% reduction in NO-ASA (3000 p.p.m. in the diet)-treated animals (P<0.001). There was no statistically significant effect by traditional ASA at equimolar doses. Our data indicate that NO-ASA is a highly promising agent for the prevention and/or treatment of cancer.


2020 ◽  
Vol 21 (21) ◽  
pp. 7876
Author(s):  
Andrey V. Markov ◽  
Aleksandra V. Sen’kova ◽  
Valeriya O. Babich ◽  
Kirill V. Odarenko ◽  
Vadim A. Talyshev ◽  
...  

Plant-extracted triterpenoids belong to a class of bioactive compounds with pleotropic functions, including antioxidant, anti-cancer, and anti-inflammatory effects. In this work, we investigated the anti-inflammatory and anti-oxidative activities of a semisynthetic derivative of 18βH-glycyrrhetinic acid (18βH-GA), soloxolone methyl (methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate, or SM) in vitro on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and in vivo in models of acute inflammation: LPS-induced endotoxemia and carrageenan-induced peritonitis. SM used at non-cytotoxic concentrations was found to attenuate the production of reactive oxygen species and nitric oxide (II) and increase the level of reduced glutathione production by LPS-stimulated RAW264.7 cells. Moreover, SM strongly suppressed the phagocytic and migration activity of activated macrophages. These effects were found to be associated with the stimulation of heme oxigenase-1 (HO-1) expression, as well as with the inhibition of nuclear factor-κB (NF-κB) and Akt phosphorylation. Surprisingly, it was found that SM significantly enhanced LPS-induced expression of the pro-inflammatory cytokines interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in RAW264.7 cells via activation of the c-Jun/Toll-like receptor 4 (TLR4) signaling axis. In vivo pre-exposure treatment with SM effectively inhibited the development of carrageenan-induced acute inflammation in the peritoneal cavity, but it did not improve LPS-induced inflammation in the endotoxemia model.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 449-449
Author(s):  
Patricia Perez ◽  
Desiree Wanders ◽  
Hannah Land ◽  
Kathryn Chiang ◽  
Rami Najjar ◽  
...  

Abstract Objectives Studies suggest that inflammation mediates the link between obesity and its comorbidities including type 2 diabetes and cardiovascular disease. Hence, there is a demand for effective alternative or complementary approaches to treat obesity-associated inflammation. The objective of this study was to determine whether consumption of blackberries (BL) and raspberries (RB) alone or in combination reduce obesity-induced inflammation. Methods In Vitro Study: RAW 264.7 macrophages were pretreated with either BL, RB, or BL + RB, each at a final concentration of 200 µg/mL for 2 h. LPS (1 ng/mL) was then added to the media for 16 h. mRNA expression of inflammatory cytokines was measured. In Vivo Study: Five-week-old mice were acclimated to a low-fat low-sucrose (LFLS) diet for one week after which mice were randomized 10 per group to one of five groups: 1) LFLS, 2) high-fat high-sucrose (HFHS), 3) HFHS + 10% BL, 4) HFHS + 10% RB, or 5) HFHS + 5% BL + 5% RB. Expression of inflammatory markers was measured in the liver as well as epididymal and inguinal white adipose tissue. Results In Vitro Study: Each berry alone and in combination suppressed the LPS-induced increase in inflammatory markers, with the combination (BL + RB) having the greatest effect. The combination suppressed LPS-induced expression of Ccl2, Tnfa, F4/80, and Il6 by 3.7−, 5.3−, 5.3−, and 4.4-fold, respectively. In Vivo Study: Gene expression analysis indicated that berry consumption had no significant effect on proinflammatory (Ccl2, Il1b, Tnfa, Il6, Itgam) or anti-inflammatory (Adipoq, Arg1, Mgl1) markers in adipose tissue depots or liver. However, relatively low gene expression of inflammatory markers in the tissues indicates that the mice fed the HFHS diet failed to develop a robust inflammatory state. Conclusions BL and RB have direct anti-inflammatory effects on immune cells. Initial analysis indicates that consumption of BL and RB has no significant effects on markers of inflammation in a diet-induced mouse model of obesity. However, it is possible that the relatively low levels of inflammation in these mice masked the anti-inflammatory potential of BL and RB. Ongoing analysis will provide additional insights into the effects of BL and RB on inflammation in these tissues. Funding Sources Lewis Foundation Award.


2016 ◽  
Vol 76 (3) ◽  
pp. 612-619 ◽  
Author(s):  
E A Ross ◽  
A J Naylor ◽  
J D O'Neil ◽  
T Crowley ◽  
M L Ridley ◽  
...  

ObjectivesTristetraprolin (TTP), a negative regulator of many pro-inflammatory genes, is strongly expressed in rheumatoid synovial cells. The mitogen-activated protein kinase (MAPK) p38 pathway mediates the inactivation of TTP via phosphorylation of two serine residues. We wished to test the hypothesis that these phosphorylations contribute to the development of inflammatory arthritis, and that, conversely, joint inflammation may be inhibited by promoting the dephosphorylation and activation of TTP.MethodsThe expression of TTP and its relationship with MAPK p38 activity were examined in non-inflamed and rheumatoid arthritis (RA) synovial tissue. Experimental arthritis was induced in a genetically modified mouse strain, in which endogenous TTP cannot be phosphorylated and inactivated. In vitro and in vivo experiments were performed to test anti-inflammatory effects of compounds that activate the protein phosphatase 2A (PP2A) and promote dephosphorylation of TTP.ResultsTTP expression was significantly higher in RA than non-inflamed synovium, detected in macrophages, vascular endothelial cells and some fibroblasts and co-localised with MAPK p38 activation. Substitution of TTP phosphorylation sites conferred dramatic protection against inflammatory arthritis in mice. Two distinct PP2A agonists also reduced inflammation and prevented bone erosion. In vitro anti-inflammatory effects of PP2A agonism were mediated by TTP activation.ConclusionsThe phosphorylation state of TTP is a critical determinant of inflammatory responses, and a tractable target for novel anti-inflammatory treatments.


2007 ◽  
Vol 35 (2) ◽  
pp. 288-291 ◽  
Author(s):  
A.G. Rossi ◽  
J.M. Hallett ◽  
D.A. Sawatzky ◽  
M.M. Teixeira ◽  
C. Haslett

Apoptosis of granulocytes and the subsequent clearance of apoptotic cells are important processes for the successful resolution of inflammation. Signalling pathways, including those involving NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase) have been shown to be key regulators of inflammatory cell survival and apoptosis in vitro. In addition, manipulation of such pathways in vivo has indicated that they also play a role in the resolution of inflammation. Furthermore, manipulation of proteins directly involved in the control of apoptosis, such as Bcl-2 family members and caspases, can be targeted in vivo to influence inflammatory resolution. Recently, it has been shown that CDK (cyclin-dependent kinase) inhibitor drugs induce caspase-dependent human neutrophil apoptosis possibly by altering levels of the anti-apoptotic Bcl-2 family member, Mcl-1. Importantly, CDK inhibitor drugs augment the resolution of established ‘neutrophil-dominant’ inflammation by promoting apoptosis of neutrophils. Thus manipulation of apoptotic pathways, together with ensuring macrophage clearance of apoptotic cells, appears to be a viable pharmacological target for reducing established inflammation.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Joon-Ki Kim ◽  
Sang-Won Park ◽  
Jung-Woo Kang ◽  
Yu-Jin Kim ◽  
Sung Youl Lee ◽  
...  

Therapeutic effects of GCSB-5 on osteoarthritis were measured by the amount of glycosaminoglycan in rabbit articular cartilage explantsin vitro, in experimental osteoarthritis induced by intra-articular injection of monoiodoacetate in ratsin vivo. GCSB-5 was orally administered for 28 days.In vitro, GCSB-5 inhibited proteoglycan degradation. GCSB-5 significantly suppressed the histological changes in monoiodoacetate-induced osteoarthritis. Matrix metalloproteinase (MMP) activity, as well as, the levels of serum tumor necrosis factor-α, cyclooxygenase-2, inducible nitric oxide synthase protein, and mRNA expressions were attenuated by GCSB-5, whereas the level of interleukin-10 was potentiated. By GCSB-5, the level of nuclear factor-κB p65 protein expression was significantly attenuated but, on the other hand, the level of inhibitor of κB-α protein expression was increased. These results indicate that GCSB-5 is a potential therapeutic agent for the protection of articular cartilage against progression of osteoarthritis through inhibition of MMPs activity, inflammatory mediators, and NF-κB activation.


Sign in / Sign up

Export Citation Format

Share Document