scholarly journals Design of Driving Waveform Based on Overdriving Voltage for Shortening Response Time in Electrowetting Displays

2021 ◽  
Vol 9 ◽  
Author(s):  
Wenjun Zeng ◽  
Zichuan Yi ◽  
Yiming Zhao ◽  
Weibo Zeng ◽  
Simin Ma ◽  
...  

A fast response speed of a pixel is important for electrowetting displays (EWDs). However, traditional driving waveforms of EWDs have the disadvantage of long response time. So, a driving waveform, which based on overdriving voltages and charge trapping theory, was proposed in this paper to shorten the response time of EWDs. The driving waveform was composed of an overdriving stage and a driving stage. Firstly, a simplified physical model was introduced to analyze the influence of driving voltages on the response time. Then, an overdriving voltage was applied in the overdriving stage to increase the respond speed of oil, and a target voltage was applied in the driving stage to obtain a target luminance. In addition, the effect of different overdriving voltages and overdriving time values on the response time was analyzed by charge trapping theory to achieve an optimal performance. Finally, the driving waveform was imported into an EWD for performance testing. Experimental results showed that the response time of the EWD can be shortened by 29.27% compared with a PWM driving waveform.

Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 862 ◽  
Author(s):  
Zichuan Yi ◽  
Wenyong Feng ◽  
Li Wang ◽  
Liming Liu ◽  
Yue Lin ◽  
...  

Electrowetting display (EWD) performance is severely affected by ink distribution and charge trapping in pixel cells. Therefore, a multi structural driving waveform is proposed for improving the aperture ratio of EWDs. In this paper, the hysteresis characteristic (capacitance–voltage, C-V) curve of the EWD pixel is tested and analyzed for obtaining the driving voltage value at the inflection point of the driving waveform. In the composition of driving waveform, a voltage slope is designed for preventing ink dispersion and a reverse pulse is designed for releasing the trapped charge which is caused by hysteresis characteristic. Finally, the frequency and the duty cycle of the driving waveform are optimized for the max aperture ratio by a series of testing. The experimental results show that the proposed driving waveform can improve the ink dispersion behavior, and the aperture ratio of the EWD is about 8% higher than the conventional driving waveform. At the same time, the response speed of the driving waveform can satisfy the dynamic display in EWDs, which provides a new idea for the design of the EWD driving scheme.


2020 ◽  
Vol 12 (1) ◽  
pp. 41-47
Author(s):  
TrI Istiana ◽  
Raksaka Indra A ◽  
G.S. Budhi Dharmawan ◽  
Bowo Prakoso

An official weather forecast dissemination application named @infoBMKG developed for Android and iOS by BMKG available since 2016. Following users behaviour on instant messaging service application, system development is necessary needed for accommodating request-based dissemination. The Telegram Bot feature with Webhook method is applied because of the efficiency on coding for initial setup in the development of Telegram Bot. Therefore, it allows fast response in sending reply to any request. There are three main menus in the design of the telegram Bot (@BMKGbot) displayed as Weather Forecast, Airport Weather, and Satellite Imagery. As results of performance testing, the average response time dissemination-request 2.54s  for Weather Forecast, 2.76s for Airport Weather and 7.28s for Satellite Imagery. Bigger size of data disseminated in an image format of satellite imagery cause longer response time, however the performance testing obtain response times within satisfactory period and meet as expected.  It is recommended to implement @BMKGbot at reliable hosting service on its operational environment for chasing users’ satisfaction with high availability services in term of weather forecast dissemination.


2020 ◽  
Vol 8 ◽  
Author(s):  
Linwei Liu ◽  
Zhuoyu Wu ◽  
Li Wang ◽  
Taiyuan Zhang ◽  
Wei Li ◽  
...  

In traditional electrowetting display (EWD) drivers, direct current (DC) voltage and pulse width modulation are often used, which easily caused an electrowetting charge trapping phenomenon in a hydrophobic insulating layer. Therefore, the driving voltage must be increased for driving EWDs, and oil backflow cannot be solved. Aqueous solutions are often used as polar liquids for EWDs, and the reverse voltage of alternating current (AC) driving can cause chemical reactions between water and indium tin oxide (ITO). So, a driving waveform was proposed, which included a DC waveform and an AC waveform, to separately drive EWDs for oil rupture and open state. Firstly, a DC waveform was used when the oil was broken, and the response time was reduced by designing the DC voltage and duration. Secondly, an AC waveform was used when the oil required to be stable. Oil backflow could be suppressed by the AC waveform. The main parameters of AC waveform include reverse voltage, frequency and duty cycle. The reverse voltage of EWDs could be obtained by voltammetry. The frequency could be obtained by analyzing the rising and falling edges of the capacitance voltage curve. The experimental results showed that the proposed waveform can effectively suppress oil backflow and shorten the response time. The response time was about 86% lower than the conventional driving waveforms, and oil backflow was about 72% slower than the DC driving waveform.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lixia Tian ◽  
Pengfei Bai

As a reflective display technology, electrowetting displays (EWDs) have the advantages of paper-like display, low power consumption, fast response, and full color, but the aperture ratio of EWDs is seriously affected by oil dispersion and charge trapping. In order to improve the aperture ratio and optimize the display performance of EWDs, a combined pulse driving waveform with rising gradient design was proposed. First, an initial driving voltage was established by the threshold voltage of oil film rupture (Vth). And then, a rising gradient was designed to prevent oil from dispersing. At last, the oil splitting and movement were controlled to achieve the target aperture combined with the pulse waveform. Experimental results showed that the oil dispersion of EWDs can be effectively improved by using the proposed driving waveform, the aperture ratio of EWDs was increased by 3.16%, and the stability was increased by 71.43%.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shufa Lai ◽  
Qinghua Zhong ◽  
Hailing Sun

Electrowetting display (EWD) is a new reflective display device with low power consumption and fast response speed. However, the maximum aperture ratio of EWDs is confined by oil-splitting. In order to suppress oil-splitting, a two-dimensional EWD model with a switch-on and a switch-off process was established in this paper. The process of oil-splitting was obtained by applying different voltage values in this model. Then, the relationship between the oil-splitting process and the waveforms with different slopes was analyzed. Based on this relationship, a driving waveform with a narrow falling ramp, low-voltage maintenance, and a rising ramp was proposed on the basis of square waveform. The proposed narrow falling ramp drove the oil to rupture on one side. The low-voltage maintenance stage drove the oil to shrink with a whole block. The proposed rising ramp was pushed the oil into a corner quickly. The experimental results showed that the oil splitting can be suppressed effectively by applying the proposed driving waveform. The aperture ratio of the proposed driving waveform was 2.9% higher than that of the square waveform with the same voltage.


2020 ◽  
Vol 4 (2) ◽  
pp. 352-361
Author(s):  
I Made Sukarsa ◽  
I Kadek Teo Prayoga Kartika ◽  
I Putu Arya Dharmadi

Online transportation services are transportation services that take advantage of advances in information technology. In Indonesia, several online transportation service providers have grown, such as Gojek, Grab and several other startup startups. In addition to the many benefits and conveniences that have been provided, the service price factor is still felt expensive for the community, especially the lower classes. One solution is to build a Collaborative Transportation Application that utilizes the Collaborative Transportation Management (CTM) interaction method. The main features contained in the application, namely the feature of finding driver routes in the direction of the consumer route, online chat, and route management by utilizing the Android mobile application based on Google Map API and Firebase Cloud Messaging. Performance testing using JMeter from a total of 300 virtual users performs 6 HTTP requests resulting in an average response time of 0.852 alias tolerated according to Apdex standards. Based on the results of testing of 15 respondents obtained the results that this application is easy to use, supports traveling activities, fast response time when used, features provided are quite complete, an accurate position tracking system, unidirectional route search is very compatible with consumer routes, and the process of coordination and driver collaboration is very good so that the travel costs borne by consumers become more economical..


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 59
Author(s):  
Hu Zhang ◽  
Zichuan Yi ◽  
Liming Liu ◽  
Feng Chi ◽  
Yunfeng Hu ◽  
...  

Three-color electrophoretic displays (EPDs) have the characteristics of colorful display, reflection display, low power consumption, and flexible display. However, due to the addition of red particles, response time of three-color EPDs is increased. In this paper, we proposed a new driving waveform based on high-frequency voltage optimization and electrophoresis theory, which was used to shorten the response time. The proposed driving waveform was composed of an activation stage, a new red driving stage, and a black or white driving stage. The response time of particles was effectively reduced by removing an erasing stage. In the design process, the velocity of particles in non-polar solvents was analyzed by Newton’s second law and Stokes law. Next, an optimal duration and an optimal frequency of the activation stage were obtained to reduce ghost images and improve particle activity. Then, an optimal voltage which can effectively drive red particles was tested to reduce the response time of red particles. Experimental results showed that compared with a traditional driving waveform, the proposed driving waveform had a better performance. Response times of black particles, white particles and red particles were shortened by 40%, 47.8% and 44.9%, respectively.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1306
Author(s):  
Hu Zhang ◽  
Zichuan Yi ◽  
Simin Ma ◽  
Shaoning Deng ◽  
Weibiao Zhou ◽  
...  

The shortage of color in traditional electrophoretic displays (EPDs) can be compensated by three-color EPDs. However, the response time of black particles and white particles is increased. A new driving waveform based on the principle of three-color EPDs and electrophoresis theory was proposed to shorten the response time of black particles and white particles. The proposed driving waveform consisted of an erasing stage, an activation stage, a red driving stage, and a white or a black driving stage. The activation stage was mainly optimized in this paper. Firstly, the motion characteristics of the particles were analyzed using Stokes law and electrophoresis theory. Secondly, an optimal high frequency oscillation voltage was tested in order to improve the activity of the particles. Then, the influence of oscillation period and oscillation times on the activation stage were analyzed for optimizing the reference grayscale. According to the luminance of pixels, an oscillation period of 30 ms and an oscillation time of 30 were determined. The experimental results showed that the response time of black particles was shortened by 45%, and the response time of white particles was shortened by 40% compared with a traditional driving waveform.


2017 ◽  
Vol 3 (2) ◽  
pp. 76
Author(s):  
Octarina Nur Samijayani ◽  
Ibnu Fauzi

<p><em>Abstrak</em> - <strong>Keamanan rumah menjadi hal yang sangat penting ketika pemilik rumah meninggalkan rumah dalam keadaan kosong. Selain pencurian, kebakaran juga merupakan masalah yang sering kali terjadi ketika rumah ditinggal pemiliknya. Sebagai alternatif solusi untuk menjaga dan mengawasi rumah yang diajukan pada penelitian ini ialah menggunakan teknologi Jaringan Sensor Nirkabel yang terintegrasi dengan jaringan internet, sehingga pemilik rumah tetap dapat mengawasi keadaan rumah dari jarak jauh. Pada penelitian ini dirancang prototype sistem rumah pintar atau Smart Home yang memanfaatkan teknologi Jaringan Sensor Nirkabel menggunakan standard Zigbee. Beberapa node sensor ditempatkan pada peralatan rumah, dimana setiap node dapat saling berkomunikasi secara wireless dan terpusat di node kordinator. Selanjutnya node kordinatior akan terhubung ke jaringan internet sehingga pemilik rumah dapat membuka aplikasi smart home kapan saja dan dimana saja. Rancangan sistem <em>Smart Home</em> disimulasikan menggunakan rumah model untuk menguji kinerja perangkat <em>Smart Home</em>. Pengujian kinerja Smart Home dimulai dengan pengujian keakurasian masing masing data sensor hingga waktu respon komunikasi dari sensor ke pusat monitoring. Tingkat error pembacaan suhu disetiap ruangan ialah 1 - 4.27%. Sensor PIR berhasil mendeteksi keberadaan orang di suatu ruangan dengan waktu delay </strong><strong>adalah 2.8 detik dengan jarak maksimal 5 meter</strong><strong>. Fungsi kendali dan monitoring (<em>on/off</em>) perangkat elektronik bekerja dengan baik, dengan waktu respon kurang dari 1 detik. Dari hasil pengujian komunikasi nirkabel antar node, diperoleh bahwa jarak maksimal antar node ialah sekitar 20 m, dengan rata-rata waktu respon pengiriman data ialah 1-2 detik. Adapun waktu respon mengalami delay mencapai 2 detik apabila beberapa perintah kendali dilakukan pada waktu yang bersamaan.</strong></p><p> </p><p><strong><em>Kata Kunci - </em></strong><em>Smart Home</em>, Jaringan Sensor Nirkabel, Zigbee.</p><p> </p><p><em>Abstrak</em><strong> - Home security becomes very important when homeowners leave the house empty. In addition to theft, fire is also a problem that often occurs when the house left the owner. As an alternative solution to maintain and supervise the homes submitted in this study is to use Wireless Sensor Network technology integrated with the Internet network, so that homeowners can still monitor the state of the house remotely. In this study designed prototype smart home system or Smart Home which utilizes Wireless Sensor Network technology using Zigbee standard. Some sensor nodes are placed in the home equipment, where each node can communicate wirelessly and centrally at the coordinator node. Next node coordinate will be connected to the internet network so that homeowners can open smart home application anytime and anywhere. The Smart Home system design is simulated using a home model to test the performance of Smart Home devices. Smart Home performance testing begins with testing the accuracy of each sensor data until the communication response time from the sensor to the monitoring center. The error rate of temperature readings in each room is 1 - 4.27%. PIR sensor successfully detects the presence of people in a room with a delay time is 2.8 seconds with a maximum distance of 5 meters. The control and monitoring functions (on / off) of electronic devices work well, with a response time of less than 1 second. From the results of testing wireless communication between nodes, obtained that the maximum distance between nodes is about 20 m, with the average response time of data transmission is 1-2 seconds. The response time has a delay of 2 seconds if some control commands are done at the same time.</strong><strong></strong></p><p><strong> </strong></p><p><strong><em>Keywords - </em></strong> <em>Smart Home</em>, Jaringan Sensor Nirkabel, Zigbee.</p>


1994 ◽  
Vol 29 (4) ◽  
pp. 127-132 ◽  
Author(s):  
Naomi Rea ◽  
George G. Ganf

Experimental results demonstrate bow small differences in depth and water regime have a significant affect on the accumulation and allocation of nutrients and biomass. Because the performance of aquatic plants depends on these factors, an understanding of their influence is essential to ensure that systems function at their full potential. The responses differed for two emergent species, indicating that within this morphological category, optimal performance will fall at different locations across a depth or water regime gradient. The performance of one species was unaffected by growth in mixture, whereas the other performed better in deep water and worse in shallow.


Sign in / Sign up

Export Citation Format

Share Document