scholarly journals Pengembangan Sistem Diseminasi Prakiraan Cuaca Menggunakan Aplikasi Bot Telegram dengan Metode Webhook

2020 ◽  
Vol 12 (1) ◽  
pp. 41-47
Author(s):  
TrI Istiana ◽  
Raksaka Indra A ◽  
G.S. Budhi Dharmawan ◽  
Bowo Prakoso

An official weather forecast dissemination application named @infoBMKG developed for Android and iOS by BMKG available since 2016. Following users behaviour on instant messaging service application, system development is necessary needed for accommodating request-based dissemination. The Telegram Bot feature with Webhook method is applied because of the efficiency on coding for initial setup in the development of Telegram Bot. Therefore, it allows fast response in sending reply to any request. There are three main menus in the design of the telegram Bot (@BMKGbot) displayed as Weather Forecast, Airport Weather, and Satellite Imagery. As results of performance testing, the average response time dissemination-request 2.54s  for Weather Forecast, 2.76s for Airport Weather and 7.28s for Satellite Imagery. Bigger size of data disseminated in an image format of satellite imagery cause longer response time, however the performance testing obtain response times within satisfactory period and meet as expected.  It is recommended to implement @BMKGbot at reliable hosting service on its operational environment for chasing users’ satisfaction with high availability services in term of weather forecast dissemination.

2021 ◽  
Vol 9 ◽  
Author(s):  
Wenjun Zeng ◽  
Zichuan Yi ◽  
Yiming Zhao ◽  
Weibo Zeng ◽  
Simin Ma ◽  
...  

A fast response speed of a pixel is important for electrowetting displays (EWDs). However, traditional driving waveforms of EWDs have the disadvantage of long response time. So, a driving waveform, which based on overdriving voltages and charge trapping theory, was proposed in this paper to shorten the response time of EWDs. The driving waveform was composed of an overdriving stage and a driving stage. Firstly, a simplified physical model was introduced to analyze the influence of driving voltages on the response time. Then, an overdriving voltage was applied in the overdriving stage to increase the respond speed of oil, and a target voltage was applied in the driving stage to obtain a target luminance. In addition, the effect of different overdriving voltages and overdriving time values on the response time was analyzed by charge trapping theory to achieve an optimal performance. Finally, the driving waveform was imported into an EWD for performance testing. Experimental results showed that the response time of the EWD can be shortened by 29.27% compared with a PWM driving waveform.


2020 ◽  
Vol 4 (2) ◽  
pp. 352-361
Author(s):  
I Made Sukarsa ◽  
I Kadek Teo Prayoga Kartika ◽  
I Putu Arya Dharmadi

Online transportation services are transportation services that take advantage of advances in information technology. In Indonesia, several online transportation service providers have grown, such as Gojek, Grab and several other startup startups. In addition to the many benefits and conveniences that have been provided, the service price factor is still felt expensive for the community, especially the lower classes. One solution is to build a Collaborative Transportation Application that utilizes the Collaborative Transportation Management (CTM) interaction method. The main features contained in the application, namely the feature of finding driver routes in the direction of the consumer route, online chat, and route management by utilizing the Android mobile application based on Google Map API and Firebase Cloud Messaging. Performance testing using JMeter from a total of 300 virtual users performs 6 HTTP requests resulting in an average response time of 0.852 alias tolerated according to Apdex standards. Based on the results of testing of 15 respondents obtained the results that this application is easy to use, supports traveling activities, fast response time when used, features provided are quite complete, an accurate position tracking system, unidirectional route search is very compatible with consumer routes, and the process of coordination and driver collaboration is very good so that the travel costs borne by consumers become more economical..


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 59
Author(s):  
Hu Zhang ◽  
Zichuan Yi ◽  
Liming Liu ◽  
Feng Chi ◽  
Yunfeng Hu ◽  
...  

Three-color electrophoretic displays (EPDs) have the characteristics of colorful display, reflection display, low power consumption, and flexible display. However, due to the addition of red particles, response time of three-color EPDs is increased. In this paper, we proposed a new driving waveform based on high-frequency voltage optimization and electrophoresis theory, which was used to shorten the response time. The proposed driving waveform was composed of an activation stage, a new red driving stage, and a black or white driving stage. The response time of particles was effectively reduced by removing an erasing stage. In the design process, the velocity of particles in non-polar solvents was analyzed by Newton’s second law and Stokes law. Next, an optimal duration and an optimal frequency of the activation stage were obtained to reduce ghost images and improve particle activity. Then, an optimal voltage which can effectively drive red particles was tested to reduce the response time of red particles. Experimental results showed that compared with a traditional driving waveform, the proposed driving waveform had a better performance. Response times of black particles, white particles and red particles were shortened by 40%, 47.8% and 44.9%, respectively.


Author(s):  
M.J. Kim ◽  
L.C. Liu ◽  
S.H. Risbud ◽  
R.W. Carpenter

When the size of a semiconductor is reduced by an appropriate materials processing technique to a dimension less than about twice the radius of an exciton in the bulk crystal, the band like structure of the semiconductor gives way to discrete molecular orbital electronic states. Clusters of semiconductors in a size regime lower than 2R {where R is the exciton Bohr radius; e.g. 3 nm for CdS and 7.3 nm for CdTe) are called Quantum Dots (QD) because they confine optically excited electron- hole pairs (excitons) in all three spatial dimensions. Structures based on QD are of great interest because of fast response times and non-linearity in optical switching applications.In this paper we report the first HREM analysis of the size and structure of CdTe and CdS QD formed by precipitation from a modified borosilicate glass matrix. The glass melts were quenched by pouring on brass plates, and then annealed to relieve internal stresses. QD precipitate particles were formed during subsequent "striking" heat treatments above the glass crystallization temperature, which was determined by differential thermal analysis.


The Analyst ◽  
2020 ◽  
Vol 145 (1) ◽  
pp. 122-131 ◽  
Author(s):  
Wanda V. Fernandez ◽  
Rocío T. Tosello ◽  
José L. Fernández

Gas diffusion electrodes based on nanoporous alumina membranes electrocatalyze hydrogen oxidation at high diffusion-limiting current densities with fast response times.


2017 ◽  
Vol 3 (2) ◽  
pp. 76
Author(s):  
Octarina Nur Samijayani ◽  
Ibnu Fauzi

<p><em>Abstrak</em> - <strong>Keamanan rumah menjadi hal yang sangat penting ketika pemilik rumah meninggalkan rumah dalam keadaan kosong. Selain pencurian, kebakaran juga merupakan masalah yang sering kali terjadi ketika rumah ditinggal pemiliknya. Sebagai alternatif solusi untuk menjaga dan mengawasi rumah yang diajukan pada penelitian ini ialah menggunakan teknologi Jaringan Sensor Nirkabel yang terintegrasi dengan jaringan internet, sehingga pemilik rumah tetap dapat mengawasi keadaan rumah dari jarak jauh. Pada penelitian ini dirancang prototype sistem rumah pintar atau Smart Home yang memanfaatkan teknologi Jaringan Sensor Nirkabel menggunakan standard Zigbee. Beberapa node sensor ditempatkan pada peralatan rumah, dimana setiap node dapat saling berkomunikasi secara wireless dan terpusat di node kordinator. Selanjutnya node kordinatior akan terhubung ke jaringan internet sehingga pemilik rumah dapat membuka aplikasi smart home kapan saja dan dimana saja. Rancangan sistem <em>Smart Home</em> disimulasikan menggunakan rumah model untuk menguji kinerja perangkat <em>Smart Home</em>. Pengujian kinerja Smart Home dimulai dengan pengujian keakurasian masing masing data sensor hingga waktu respon komunikasi dari sensor ke pusat monitoring. Tingkat error pembacaan suhu disetiap ruangan ialah 1 - 4.27%. Sensor PIR berhasil mendeteksi keberadaan orang di suatu ruangan dengan waktu delay </strong><strong>adalah 2.8 detik dengan jarak maksimal 5 meter</strong><strong>. Fungsi kendali dan monitoring (<em>on/off</em>) perangkat elektronik bekerja dengan baik, dengan waktu respon kurang dari 1 detik. Dari hasil pengujian komunikasi nirkabel antar node, diperoleh bahwa jarak maksimal antar node ialah sekitar 20 m, dengan rata-rata waktu respon pengiriman data ialah 1-2 detik. Adapun waktu respon mengalami delay mencapai 2 detik apabila beberapa perintah kendali dilakukan pada waktu yang bersamaan.</strong></p><p> </p><p><strong><em>Kata Kunci - </em></strong><em>Smart Home</em>, Jaringan Sensor Nirkabel, Zigbee.</p><p> </p><p><em>Abstrak</em><strong> - Home security becomes very important when homeowners leave the house empty. In addition to theft, fire is also a problem that often occurs when the house left the owner. As an alternative solution to maintain and supervise the homes submitted in this study is to use Wireless Sensor Network technology integrated with the Internet network, so that homeowners can still monitor the state of the house remotely. In this study designed prototype smart home system or Smart Home which utilizes Wireless Sensor Network technology using Zigbee standard. Some sensor nodes are placed in the home equipment, where each node can communicate wirelessly and centrally at the coordinator node. Next node coordinate will be connected to the internet network so that homeowners can open smart home application anytime and anywhere. The Smart Home system design is simulated using a home model to test the performance of Smart Home devices. Smart Home performance testing begins with testing the accuracy of each sensor data until the communication response time from the sensor to the monitoring center. The error rate of temperature readings in each room is 1 - 4.27%. PIR sensor successfully detects the presence of people in a room with a delay time is 2.8 seconds with a maximum distance of 5 meters. The control and monitoring functions (on / off) of electronic devices work well, with a response time of less than 1 second. From the results of testing wireless communication between nodes, obtained that the maximum distance between nodes is about 20 m, with the average response time of data transmission is 1-2 seconds. The response time has a delay of 2 seconds if some control commands are done at the same time.</strong><strong></strong></p><p><strong> </strong></p><p><strong><em>Keywords - </em></strong> <em>Smart Home</em>, Jaringan Sensor Nirkabel, Zigbee.</p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 874
Author(s):  
Soyoung Bae ◽  
Youngno Kim ◽  
Jeong Min Kim ◽  
Jung Hyun Kim

MXene, a 2D material, is used as a filler to manufacture polymer electrolytes with high ionic conductivity because of its unique sheet shape, large specific surface area and high aspect ratio. Because MXene has numerous -OH groups on its surface, it can cause dehydration and condensation reactions with poly(4-styrenesulfonic acid) (PSSA) and consequently create pathways for the conduction of cations. The movement of Grotthuss-type hydrogen ions along the cation-conduction pathway is promoted and a high ionic conductivity can be obtained. In addition, when electrolytes composed of a conventional acid or metal salt alone is applied to an electrochromic device (ECD), it does not bring out fast response time, high coloration efficiency and transmittance contrast simultaneously. Therefore, dual-cation electrolytes are designed for high-performance ECDs. Bis(trifluoromethylsulfonyl)amine lithium salt (LiTFSI) was used as a source of lithium ions and PSSA crosslinked with MXene was used as a source of protons. Dual-Cation electrolytes crosslinked with MXene was applied to an indium tin oxide-free, all-solution-processable ECD. The effect of applying the electrolyte to the device was verified in terms of response time, coloration efficiency and transmittance contrast. The ECD with a size of 5 × 5 cm2 showed a high transmittance contrast of 66.7%, fast response time (8 s/15 s) and high coloration efficiency of 340.6 cm2/C.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 119
Author(s):  
Anastasiia Tukmakova ◽  
Ivan Tkhorzhevskiy ◽  
Artyom Sedinin ◽  
Aleksei Asach ◽  
Anna Novotelnova ◽  
...  

Terahertz (THz) filters and detectors can find a wide application in such fields as: sensing, imaging, security systems, medicine, wireless connection, and detection of substances. Thermoelectric materials are promising basis for THz detectors’ development due to their sensitivity to the THz radiation, possibility to be heated under the THz radiation and produce voltage due to Seebeck effect. Thermoelectric thin films of Bi-Sb solid solutions are semimetals/semiconductors with the band gap comparable with THz energy and with high thermoelectric conversion efficiency at room temperature. Detecting film surface can be transformed into a periodic frequency selective surface (FSS) that can operate as a frequency filter and increases the absorption of THz radiation. We report for the first time about the simulation of THz detector based on thermoelectric Bi-Sb thin-filmed frequency-selective surface. We show that such structure can be both detector and frequency filter. Moreover, it was shown that FSS design increases not only a heating due to absorption but a temperature gradient in Bi-Sb film by two orders of magnitude in comparison with continuous films. Local temperature gradients can reach the values of the order of 100 K·mm−1. That opens new perspectives for thin-filmed thermoelectric detectors’ efficiency increase. Temperature difference formed due to THz radiation absorption can reach values on the order of 1 degree. Frequency-transient calculations show the power dependence of film temperature on time with characteristic saturation at times around several ms. That points to the perspective of reaching fast response times on such structures.


2020 ◽  
Vol 8 (35) ◽  
pp. 12148-12154 ◽  
Author(s):  
Yifan Li ◽  
Yating Zhang ◽  
Tengteng Li ◽  
Xin Tang ◽  
Mengyao Li ◽  
...  

A novel self-powered NIR and THz PTE PD based on a (MAPbI3/PEDOT:PSS) composite with a rapid response time of 28 μs.


Sign in / Sign up

Export Citation Format

Share Document