scholarly journals TmIKKε Is Required to Confer Protection Against Gram-Negative Bacteria, E. coli by the Regulation of Antimicrobial Peptide Production in the Tenebrio molitor Fat Body

2022 ◽  
Vol 12 ◽  
Author(s):  
Hye Jin Ko ◽  
Bharat Bhusan Patnaik ◽  
Ki Beom Park ◽  
Chang Eun Kim ◽  
Snigdha Baliarsingh ◽  
...  

The inhibitor of nuclear factor-kappa B (NF-κB) kinase (IKK) is the core regulator of the NF-κB pathway against pathogenic invasion in vertebrates or invertebrates. IKKβ, -ε and -γ have pivotal roles in the Toll and immune deficiency (IMD) pathways. In this study, a homolog of IKKε (TmIKKε) was identified from Tenebrio molitor RNA sequence database and functionally characterized for its role in regulating immune signaling pathways in insects. The TmIKKε gene is characterized by two exons and one intron comprising an open reading frame (ORF) of 2,196 bp that putatively encodes a polypeptide of 731 amino acid residues. TmIKKε contains a serine/threonine protein kinases catalytic domain. Phylogenetic analysis established the close homology of TmIKKε to Tribolium castaneum IKKε (TcIKKε) and its proximity with other IKK-related kinases. The expression of TmIKKε mRNA was elevated in the gut, integument, and hemocytes of the last-instar larva and the fat body, Malpighian tubules, and testis of 5-day-old adults. TmIKKε expression was significantly induced by Escherichia coli, Staphylococcus aureus, and Candida albicans challenge in whole larvae and tissues, such as hemocytes, gut, and fat body. The knockdown of the TmIKKε messenger RNA (mRNA) expression significantly reduced the survival of the larvae against microbial challenges. Further, we investigated the induction patterns of 14 T. molitor antimicrobial peptides (AMPs) genes in TmIKKε gene-silencing model after microbial challenges. While in hemocytes, the transcriptional regulation of most AMPs was negatively regulated in the gut and fat body tissue of T. molitor, AMPs, such as TmTenecin 1, TmTenecin 4, TmDefensin, TmColeoptericin A, TmColeoptericin B, TmAttacin 1a, and TmAttacin 2, were positively regulated in TmIKKε-silenced individuals after microbial challenge. Collectively, the results implicate TmIKKε as an important factor in antimicrobial innate immune responses in T. molitor.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Maryam Keshavarz ◽  
Yong Hun Jo ◽  
Ki Beom Park ◽  
Hye Jin Ko ◽  
Tariku Tesfaye Edosa ◽  
...  

AbstractDorsal, a member of the nuclear factor-kappa B (NF-κB) family of transcription factors, is a critical downstream component of the Toll pathway that regulates the expression of antimicrobial peptides (AMPs) against pathogen invasion. In this study, the full-length ORF of Dorsal was identified from the RNA-seq database of the mealworm beetle Tenebrio molitor (TmDorX2). The ORF of TmDorX2 was 1,482 bp in length, encoding a polypeptide of 493 amino acid residues. TmDorX2 contains a conserved Rel homology domain (RHD) and an immunoglobulin-like, plexins, and transcription factors (IPT) domain. TmDorX2 mRNA was detected in all developmental stages, with the highest levels observed in 3-day-old adults. TmDorX2 transcripts were highly expressed in the adult Malpighian tubules (MT) and the larval fat body and MT tissues. After challenging the larvae with Staphylococcus aureus and Escherichia coli, the TmDorX2 mRNA levels were upregulated 6 and 9 h post infection in the whole body, fat body, and hemocytes. Upon Candida albicans challenge, the TmDorX2 mRNA expression were found highest at 9 h post-infection in the fat body. In addition, TmDorX2-knockdown larvae exposed to E. coli, S. aureus, or C. albicans challenge showed a significantly increased mortality rate. Furthermore, the expression of 11 AMP genes was downregulated in the gut and fat body of dsTmDorX2-injected larvae upon E. coli challenge. After C. albicans and S. aureus challenge of dsTmDorX2-injected larvae, the expression of 11 and 10 AMPs was downregulated in the gut and fat body, respectively. Intriguingly, the expression of antifungal transcripts TmTenecin-3 and TmThaumatin-like protein-1 and -2 was greatly decreased in TmDorX2-silenced larvae in response to C. albicans challenge, suggesting that TmDorX2 regulates antifungal AMPs in the gut in response to C. albicans infection. The AMP expression profiles in the fat body, hemocytes, gut, and MTs suggest that TmDorX2 might have an important role in promoting the survival of T. molitor larvae against all mentioned pathogens.


2020 ◽  
Vol 21 (6) ◽  
pp. 2113 ◽  
Author(s):  
Maryam Keshavarz ◽  
Yong Hun Jo ◽  
Tariku Tesfaye Edosa ◽  
Young Min Bae ◽  
Yeon Soo Han

Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges.


2002 ◽  
Vol 184 (9) ◽  
pp. 2399-2403 ◽  
Author(s):  
Fumiyoshi Okazaki ◽  
Yutaka Tamaru ◽  
Shinnosuke Hashikawa ◽  
Yu-Teh Li ◽  
Toshiyoshi Araki

ABSTRACT A β-1,3-xylanase gene (txyA) from a marine bacterium, Alcaligenes sp. strain XY-234, has been cloned and sequenced. txyA consists of a 1,410-bp open reading frame that encodes 469 amino acid residues with a calculated molecular mass of 52,256 Da. The domain structure of the β-1,3-xylanase (TxyA) consists of a signal peptide of 22 amino acid residues, followed by a catalytic domain which belongs to family 26 of the glycosyl hydrolases, a linker region with one array of DGG and six repeats of DNGG, and a novel carbohydrate-binding module (CBM) at the C terminus. The recombinant TxyA hydrolyzed β-1,3-xylan but not other polysaccharides such as β-1,4-xylan, carboxymethylcellulose, curdlan, glucomannan, or β-1,4-mannan. TxyA was capable of binding specifically to β-1,3-xylan. The analysis using truncated TxyA lacking either the N- or C-terminal region indicated that the region encoding the CBM was located between residues 376 and 469. Binding studies on the CBM revealed that the Kd and the maximum amount of protein bound to β-1,3-xylan were 4.2 μM and 18.2 μmol/g of β-1,3-xylan, respectively. Furthermore, comparison of the enzymatic properties between proteins with and without the CBM strongly indicated that the CBM of TxyA plays an important role in the hydrolysis of β-1,3-xylan.


2000 ◽  
Vol 74 (23) ◽  
pp. 11240-11246 ◽  
Author(s):  
Rinkei Ko ◽  
Kazuhiro Okano ◽  
Susumu Maeda

ABSTRACT Sequence analysis of the Xestia c-nigrum granulovirus (XcGV) genome identified an open reading frame encoding a 469-amino-acid (54-kDa) protein with over 30% amino acid sequence identity to a region of about 150 amino acids that includes the catalytic domains of human stromelysin 1 (Str1)/matrix metalloproteinase 3 (MMP-3) (EC 3.4.24.17 ) and sea urchin hatching enzyme (HE). Stromelysin homologs have not been reported from baculoviruses or other viruses. Unlike human Str1 and sea urchin HE, the putative XcGV-MMP does not have a signal peptide and lacks the peptide motif involved in the cysteine switch that maintains other MMPs in an inactive form. The putative XcGV-MMP, however, possesses a conserved zinc-binding motif in its putative catalytic domain. The XcGV-MMP homolog was cloned, and a recombinant Bombyx morinucleopolyhedrovirus (BmNPV) that expresses XcGV-MMP under the polyhedrin promoter was constructed. A distinct pattern of melanization was observed in B. mori larvae infected with MMP-expressing BmNPV. Fat body extracts from larvae overexpressing the 54-kDa recombinant MMP digested dye-impregnated collagen (Azocoll). The enzymatic activity was inhibited by two metalloproteinase inhibitors, EDTA and 1,10-phenanthroline. These results suggest that the XcGV MMP-3 gene homolog encodes a functional metalloproteinase.


2009 ◽  
Vol 56 (4) ◽  
Author(s):  
Ye Pan ◽  
Hengchuan Xia ◽  
Peng Lü ◽  
KePing Chen ◽  
Qin Yao ◽  
...  

Serpins are a broadly distributed family of protease inhibitors. In this study, the gene encoding Bombyx mori serpin-2 (Bmserpin-2) was cloned and expressed in E. coli. The Bmserpin-2 cDNA contains a 1125 bp open reading frame (ORF). The deduced protein has 374 amino-acid residues, contains a conserved SERPIN domain and shares extensive homology with other invertebrate serpins. RT-PCR analysis showed that Bmserpin-2 was expressed in all developmental stages of B. mori larvae and various larval tissues. Subcellular localization analysis indicated that Bmserpin-2 protein was located in the cytoplasm. Interestingly, real-time quantitative PCR revealed that the expression of Bmserpin-2 in the midgut of susceptible B. mori strain 306 significantly increased at 72 hours post inoculation (hpi) when infected with BmNPV. However, there was no significant increase of the Bmserpin-2 expression in resistant strain NB infected with BmNPV. Thus, our data indicates that Bmserpin-2 may be involved in B. mori antiviral response.


1996 ◽  
Vol 318 (1) ◽  
pp. 157-162 ◽  
Author(s):  
Brunella PERITO ◽  
Nerino ALLOCATI ◽  
Enrico CASALONE ◽  
Michele MASULLI ◽  
Beatrice DRAGANI ◽  
...  

The structural gene of the Proteus mirabilis glutathione transferase GSTB1-1 (gstB) has been isolated from genomic DNA. A nucleotide sequence determination of gstB predicted a translational product of 203 amino acid residues, perfectly matching the sequence of the previously purified protein [Mignogna, Allocati, Aceto, Piccolomini, Di Ilio, Barra and Martini (1993) Eur. J. Biochem. 211, 421–425]. The P. mirabilis GST sequence revealed 56% identity with the Escherichia coli GST at DNA level and 54% amino acid identity. Similarity has been revealed also with the translation products of the recently cloned gene bphH from Haemophilus influenzae (28% identity) and ORF3 of Burkholderia cepacia (27% identity). Putative promoter sequences with high similarity to the E. coli σ70 consensus promoter and to promoters of P. mirabiliscat and glnA genes preceded the ATG of the gstB open reading frame (ORF). gstB was brought under control of the tac promoter and overexpressed in E. coli by induction with isopropyl-β-d-thiogalactopyranoside and growth at 37 °C. The physicochemical and catalytic properties of overexpressed protein were indistinguishable from those of the enzyme purified from P. mirabilis extract. Unlike the GST belonging to Mu and Theta classes, GSTB1-1 was unable to metabolize dichloromethane. The study of the interaction of cloned GSTB1-1 with a number of antibiotics indicates that this enzyme actively participates in the binding of tetracyclines and rifamycin.


1982 ◽  
Vol 204 (1) ◽  
pp. 127-133 ◽  
Author(s):  
R E Isaac ◽  
K K Phua ◽  
H H Rees

1. Synthesis of 3′-phosphoadenosine-5′-phosphosulphate from ATP and 35SO4(-2) was demonstrated by homogenates of gut. Malpighian tubules and fat body of Spodoptera littoralis. 2. The enzyme system was most active in the gut tissue, and was primarily located in the cytosol fraction of the cell. Gut cytosol preparations were used as a source of the 3′-phosphoadenosine-5′-phosphosulphate generating system for more detailed studies. 3. Maximum synthesis required an incubation mixture containing Tris/HCl buffer (pH 7.5), ATP (20 mM), MgCl2 (13.0 mM) and K2SO4 (3 mM). 4. The specific activity of 3′-phosphoadenosine-5′-phosphosulphate synthesizing activity in gut cytosol increased during development of the sixth instar larva, reaching a peak at day 4. A sudden fall in specific activity was observed in the prepupal stage. 5. 3′-Phosphoadenosine-5′-phosphosulphate formation is the rate limiting process in the overall sulphation of p-nitrophenol in the gut cytosol preparations from S. littoralis. 6. It is concluded that the properties of the sulphate-activating system in this insect are similar to those reported for vertebrates.


2008 ◽  
Vol 2008 ◽  
pp. 1-7
Author(s):  
Zuoming Nie ◽  
Ruobing Zhou ◽  
Jian Chen ◽  
Dan Wang ◽  
Zhengbing Lv ◽  
...  

RNA methylation, which is a form of posttranscriptional modification, is catalyzed by S-adenosyl-L-methionone-dependent RNA methyltransterases (RNA MTases). We have identified a novel silkworm gene,BmRNAMTase, containing a 369-bp open reading frame that encodes a putative protein containing 122 amino acid residues and having a molecular weight of 13.88 kd. We expressed a recombinant His-tagged BmRNAMTase inE. coliBL21 (DE3), purified the fusion protein by metal-chelation affinity chromatography, and injected a New Zealand rabbit with the purified protein to generate anti-BmRNAMTase polyclonal antibodies. Immunohistochemistry revealed that BmRNAMTase is abundant in the cytoplasm ofBm5cells. In addition, using RNA interference to reduce the intracellular activity and content of BmRNAMTase, we determined that this cytoplasmic RNA methyltransferase may be involved in preventing cell death in the silkworm.


2013 ◽  
Vol 643 ◽  
pp. 56-59 ◽  
Author(s):  
Yong Gang Wang ◽  
Jian Zhong Ma ◽  
Xue Qing Ma ◽  
Jin Ge Liu ◽  
Ming Jun Yang

The sequences of Potato α-Amylase Gene amyA2 was analysised by Bioinformatics, including its codon usage bias, physical and chemical properties, subcellular localization, and conserved structures. The results showed that the cDNA had a 1218 bp open reading frame and was referred to as amyA2, which encodes for an α-amylase with 405 amino acid residues (GenBank accession number: GU134783), and shared 98% identity with a published potato α-amylase (GenBank accession number: M79328.1) at the amino acid level. The amino sequences contains a catalytic domain (PF00128、SM00624) between 20 to 348 and a C-terminal beta-sheet domain between 349-407, which are similar to ones of the amylase family 13. Eight-stranded alpha/beta barrel was also found in the enzyme, which was thought as an active site of α-amylase.


1998 ◽  
Vol 42 (5) ◽  
pp. 1181-1186 ◽  
Author(s):  
Ling Ma ◽  
Yoshikazu Ishii ◽  
Masaji Ishiguro ◽  
Hiroshi Matsuzawa ◽  
Keizo Yamaguchi

ABSTRACT Escherichia coli TUM1083, which is resistant to ampicillin, carbenicillin, cephaloridine, cephalothin, piperacillin, cefuzonam, and aztreonam while being sensitive to cefoxitin, moxalactam, cefmetazole, ceftazidime, and imipenem, was isolated from the urine of a patient treated with β-lactam antibiotics. The β-lactamase (Toho-2) purified from the bacteria hydrolyzed β-lactam antibiotics such as penicillin G, carbenicillin, cephaloridine, cefoxitin, cefotaxime, ceftazidime, and aztreonam and especially had increased relative hydrolysis rates for cephalothin, cephaloridine, cefotaxime, and ceftizoxime. Different from other extended-spectrum β-lactamases, Toho-2 was inhibited 16-fold better by the β-lactamase inhibitor tazobactam than by clavulanic acid. Resistance to β-lactams was transferred by conjugation from E. coliTUM1083 to E. coli ML4909, and the transferred plasmid was about 54.4 kbp, belonging to the incompatibility group IncFII. The cefotaxime resistance gene for Toho-2 was subcloned from the 54.4-kbp plasmid. The sequence of the gene was determined, and the open reading frame of the gene was found to consist of 981 bases. The nucleotide sequence of the gene (DDBJ accession no. D89862) designated asbla toho was found to have 76.3% identity to class A β-lactamase CTX-M-2 and 76.2% identity to Toho-1. It has 55.9% identity to SHV-1 β-lactamase and 47.5% identity to TEM-1 β-lactamase. Therefore, the newly isolated β-lactamase designated as Toho-2 produced by E. coli TUM1083 is categorized as an enzyme similar to Toho-1 group β-lactamases rather than to mutants of TEM or SHV enzymes. According to the amino acid sequence deduced from the DNA sequence, the precursor consisted of 327 amino acid residues. Comparison of Toho-2 with other β-lactamase (non-Toho-1 group) suggests that the substitutions of threonine for Arg-244 and arginine for Asn-276 are important for the extension of the substrate specificity.


Sign in / Sign up

Export Citation Format

Share Document