scholarly journals Identification of Weeds Based on Hyperspectral Imaging and Machine Learning

2021 ◽  
Vol 11 ◽  
Author(s):  
Yanjie Li ◽  
Mahmoud Al-Sarayreh ◽  
Kenji Irie ◽  
Deborah Hackell ◽  
Graeme Bourdot ◽  
...  

Weeds can be major environmental and economic burdens in New Zealand. Traditional methods of weed control including manual and chemical approaches can be time consuming and costly. Some chemical herbicides may have negative environmental and human health impacts. One of the proposed important steps for providing alternatives to these traditional approaches is the automated identification and mapping of weeds. We used hyperspectral imaging data and machine learning to explore the possibility of fast, accurate and automated discrimination of weeds in pastures where ryegrass and clovers are the sown species. Hyperspectral images from two grasses (Setaria pumila [yellow bristle grass] and Stipa arundinacea [wind grass]) and two broad leaf weed species (Ranunculus acris [giant buttercup] and Cirsium arvense [Californian thistle]) were acquired and pre-processed using the standard normal variate method. We trained three classification models, namely partial least squares-discriminant analysis, support vector machine, and Multilayer Perceptron (MLP) using whole plant averaged (Av) spectra and superpixels (Sp) averaged spectra from each weed sample. All three classification models showed repeatable identification of four weeds using both Av and Sp spectra with a range of overall accuracy of 70–100%. However, MLP based on the Sp method produced the most reliable and robust prediction result (89.1% accuracy). Four significant spectral regions were found as highly informative for characterizing the four weed species and could form the basis for a rapid and efficient methodology for identifying weeds in ryegrass/clover pastures.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3827
Author(s):  
Gemma Urbanos ◽  
Alberto Martín ◽  
Guillermo Vázquez ◽  
Marta Villanueva ◽  
Manuel Villa ◽  
...  

Hyperspectral imaging techniques (HSI) do not require contact with patients and are non-ionizing as well as non-invasive. As a consequence, they have been extensively applied in the medical field. HSI is being combined with machine learning (ML) processes to obtain models to assist in diagnosis. In particular, the combination of these techniques has proven to be a reliable aid in the differentiation of healthy and tumor tissue during brain tumor surgery. ML algorithms such as support vector machine (SVM), random forest (RF) and convolutional neural networks (CNN) are used to make predictions and provide in-vivo visualizations that may assist neurosurgeons in being more precise, hence reducing damages to healthy tissue. In this work, thirteen in-vivo hyperspectral images from twelve different patients with high-grade gliomas (grade III and IV) have been selected to train SVM, RF and CNN classifiers. Five different classes have been defined during the experiments: healthy tissue, tumor, venous blood vessel, arterial blood vessel and dura mater. Overall accuracy (OACC) results vary from 60% to 95% depending on the training conditions. Finally, as far as the contribution of each band to the OACC is concerned, the results obtained in this work are 3.81 times greater than those reported in the literature.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 804
Author(s):  
Jasminka Hasic Telalovic ◽  
Serena Pillozzi ◽  
Rachele Fabbri ◽  
Alice Laffi ◽  
Daniele Lavacchi ◽  
...  

The application of machine learning (ML) techniques could facilitate the identification of predictive biomarkers of somatostatin analog (SSA) efficacy in patients with neuroendocrine tumors (NETs). We collected data from 74 patients with a pancreatic or gastrointestinal NET who received SSA as first-line therapy. We developed three classification models to predict whether the patient would experience a progressive disease (PD) after 12 or 18 months based on clinic-pathological factors at the baseline. The dataset included 70 samples and 15 features. We initially developed three classification models with accuracy ranging from 55% to 70%. We then compared ten different ML algorithms. In all but one case, the performance of the Multinomial Naïve Bayes algorithm (80%) was the highest. The support vector machine classifier (SVC) had a higher performance for the recall metric of the progression-free outcome (97% vs. 94%). Overall, for the first time, we documented that the factors that mainly influenced progression-free survival (PFS) included age, the number of metastatic sites and the primary site. In addition, the following factors were also isolated as important: adverse events G3–G4, sex, Ki67, metastatic site (liver), functioning NET, the primary site and the stage. In patients with advanced NETs, ML provides a predictive model that could potentially be used to differentiate prognostic groups and to identify patients for whom SSA therapy as a single agent may not be sufficient to achieve a long-lasting PFS.


2021 ◽  
Vol 11 (2) ◽  
pp. 61
Author(s):  
Jiande Wu ◽  
Chindo Hicks

Background: Breast cancer is a heterogeneous disease defined by molecular types and subtypes. Advances in genomic research have enabled use of precision medicine in clinical management of breast cancer. A critical unmet medical need is distinguishing triple negative breast cancer, the most aggressive and lethal form of breast cancer, from non-triple negative breast cancer. Here we propose use of a machine learning (ML) approach for classification of triple negative breast cancer and non-triple negative breast cancer patients using gene expression data. Methods: We performed analysis of RNA-Sequence data from 110 triple negative and 992 non-triple negative breast cancer tumor samples from The Cancer Genome Atlas to select the features (genes) used in the development and validation of the classification models. We evaluated four different classification models including Support Vector Machines, K-nearest neighbor, Naïve Bayes and Decision tree using features selected at different threshold levels to train the models for classifying the two types of breast cancer. For performance evaluation and validation, the proposed methods were applied to independent gene expression datasets. Results: Among the four ML algorithms evaluated, the Support Vector Machine algorithm was able to classify breast cancer more accurately into triple negative and non-triple negative breast cancer and had less misclassification errors than the other three algorithms evaluated. Conclusions: The prediction results show that ML algorithms are efficient and can be used for classification of breast cancer into triple negative and non-triple negative breast cancer types.


Author(s):  
Aoife Gowen ◽  
Jun-Li Xu ◽  
Ana Herrero-Langreo

Applications of hyperspectral imaging (HSI) to the quantitative and qualitative measurement of samples have grown widely in recent years, due mainly to the improved performance and lower cost of imaging spectroscopy instrumentation. Data sampling is a crucial yet often overlooked step in hyperspectral image analysis, which impacts the subsequent results and their interpretation. In the selection of pixel spectra for the calibration of classification models, the spatial information in HSI data can be exploited. In this paper, a variety of sampling strategies for selection of pixel spectra are presented, exemplified through five case studies. The strategies are compared in terms of the proportion of global variability captured, practicality and predictive model performance. The use of variographic analysis as a guide to the spatial segmentation prior to sampling leads to the selection of representative subsets while reducing the variation in model performance parameters over repeated random selection.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3078 ◽  
Author(s):  
Lei Feng ◽  
Susu Zhu ◽  
Chu Zhang ◽  
Yidan Bao ◽  
Xuping Feng ◽  
...  

Seed aging during storage is irreversible, and a rapid, accurate detection method for seed vigor detection during seed aging is of great importance for seed companies and farmers. In this study, an artificial accelerated aging treatment was used to simulate the maize kernel aging process, and hyperspectral imaging at the spectral range of 874–1734 nm was applied as a rapid and accurate technique to identify seed vigor under different accelerated aging time regimes. Hyperspectral images of two varieties of maize processed with eight different aging duration times (0, 12, 24, 36, 48, 72, 96 and 120 h) were acquired. Principal component analysis (PCA) was used to conduct a qualitative analysis on maize kernels under different accelerated aging time conditions. Second-order derivatization was applied to select characteristic wavelengths. Classification models (support vector machine−SVM) based on full spectra and optimal wavelengths were built. The results showed that misclassification in unprocessed maize kernels was rare, while some misclassification occurred in maize kernels after the short aging times of 12 and 24 h. On the whole, classification accuracies of maize kernels after relatively short aging times (0, 12 and 24 h) were higher, ranging from 61% to 100%. Maize kernels with longer aging time (36, 48, 72, 96, 120 h) had lower classification accuracies. According to the results of confusion matrixes of SVM models, the eight categories of each maize variety could be divided into three groups: Group 1 (0 h), Group 2 (12 and 24 h) and Group 3 (36, 48, 72, 96, 120 h). Maize kernels from different categories within one group were more likely to be misclassified with each other, and maize kernels within different groups had fewer misclassified samples. Germination test was conducted to verify the classification models, the results showed that the significant differences of maize kernel vigor revealed by standard germination tests generally matched with the classification accuracies of the SVM models. Hyperspectral imaging analysis for two varieties of maize kernels showed similar results, indicating the possibility of using hyperspectral imaging technique combined with chemometric methods to evaluate seed vigor and seed aging degree.


RSC Advances ◽  
2014 ◽  
Vol 4 (106) ◽  
pp. 61624-61630 ◽  
Author(s):  
N. S. Hari Narayana Moorthy ◽  
Silvia A. Martins ◽  
Sergio F. Sousa ◽  
Maria J. Ramos ◽  
Pedro A. Fernandes

Classification models to predict the solvation free energies of organic molecules were developed using decision tree, random forest and support vector machine approaches and with MACCS fingerprints, MOE and PaDEL descriptors.


2021 ◽  
Author(s):  
Md. Zahangir Alam ◽  
Albino Simonetti ◽  
Rafaelle Billantino ◽  
Nick Tayler ◽  
Chris Grainge ◽  
...  

Providing proper timely treatment of asthma, self-monitoring can play a vital role in disease control. Existing methods (such as peak flow meter, smart spirometer) requires special equipment and are not always used by the patient. Using voice recording as surrogate measures of lung function can be used to assess asthma, which has good potential to self-monitor asthma and could be integrated into telehealth platforms. This study aims to apply machine learning approach to predict lung functions from recorded voice for asthma patients. A threshold-based mechanism was designed to separate speech and breathing from recordings (323 recordings from 26 participants) and features extracted from these were combined with biological attributes and lung function (percentage predicted forced expiratory volume in 1 second, FEV1%). Three predictive models were developed: (a) regression models to predict lung function, (b) multi-class classification models to predict the severity, and (c) binary classification models to predict abnormality. Random Forest (RF), Support Vector Machine (SVM), and Linear Regression (LR) algorithms were implemented to develop these predictive models. Training and test samples were separated (70%:30% using balanced portioning). Features were normalised and 10-fold cross-validation used to measure the model's training performances on the training samples. Models were then run on the test samples to measure the final performances. The RF based regression model performed better with lowest root mean square error = 10.86, and mean absolute score = 11.47, as compared to other models. In predicting the severity of lung function, the SVM based model performed better with 73.20% accuracy. The RF based model performed better in binary classification models for predicting abnormality of lung function (accuracy = 0.85, F1-score = 0.84, and area under the receiver operating characteristic curve = 0.88). The proposed machine learning approach can predict lung function (in terms of FEV1%), from the recorded voice files, better than other published approaches. These models can be extended to predict both the severity and abnormality of lung function with reasonable accuracies. This technique could be used to develop future telehealth solutions including smartphone-based applications which have potential to aid decision making and self-monitoring in asthma.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 94
Author(s):  
Alvaro Murguia-Cozar ◽  
Antonia Macedo-Cruz ◽  
Demetrio Salvador Fernandez-Reynoso ◽  
Jorge Arturo Salgado Transito

The scarcity of water for agricultural use is a serious problem that has increased due to intense droughts, poor management, and deficiencies in the distribution and application of the resource. The monitoring of crops through satellite image processing and the application of machine learning algorithms are technological strategies with which developed countries tend to implement better public policies regarding the efficient use of water. The purpose of this research was to determine the main indicators and characteristics that allow us to discriminate the phenological stages of maize crops (Zea mays L.) in Sentinel 2 satellite images through supervised classification models. The training data were obtained by monitoring cultivated plots during an agricultural cycle. Indicators and characteristics were extracted from 41 Sentinel 2 images acquired during the monitoring dates. With these images, indicators of texture, vegetation, and colour were calculated to train three supervised classifiers: linear discriminant (LD), support vector machine (SVM), and k-nearest neighbours (kNN) models. It was found that 45 of the 86 characteristics extracted contributed to maximizing the accuracy by stage of development and the overall accuracy of the trained classification models. The characteristics of the Moran’s I local indicator of spatial association (LISA) improved the accuracy of the classifiers when applied to the L*a*b* colour model and to the near-infrared (NIR) band. The local binary pattern (LBP) increased the accuracy of the classification when applied to the red, green, blue (RGB) and NIR bands. The colour ratios, leaf area index (LAI), RGB colour model, L*a*b* colour space, LISA, and LBP extracted the most important intrinsic characteristics of maize crops with regard to classifying the phenological stages of the maize cultivation. The quadratic SVM model was the best classifier of maize crop phenology, with an overall accuracy of 82.3%.


2018 ◽  
Author(s):  
Mohammadmehdi Saberioon ◽  
Petr Cisar ◽  
Laurent Labbé ◽  
Pavel Souček ◽  
Pablo Pelissier

The main aim of this study was to evaluate the feasibility of hyperspectral imagery for determining the influence of different diets on fish skin. Rainbow trout (Oncorhynchus mykiss) were fed either a commercial based diet (N= 80) or a 100 % plant-based diet (N = 80). Hyperspectral images were made using a push-broom hyperspectral imaging system in the spectral region of 394-1009 nm. All images were calibrated using dark and white reference and the average spectral data from the region of interest were extracted. Six spectral pre-treatment methods were used, including Savitzky-Golay (SG), First Derivative(FD), Second Derivative (SD), Standard Normal Variate (SNV) and Multiplicative Scatter Correction (MSC) then a support vector machine (SVM) with linear kernel was applied to establish the classification models. Additionally, the Genetic algorithm (GA) was used to select optimal wavelengths to reduce the high dimensionality from hyperspectral images in order to decrease the computational costs and simplify the classification models. Overall classification models established from full wavelengths and selected wavelengths showed the good performance (Correct Classification Rate (CCR) = 0.871, Kappa = 0.741) when coupled with SG. The overall results indicate that the integration of Vis/NIR hyperspectral imaging system and machine learning algorithms has promise for discriminating different diets based on the live fish skin.


Sign in / Sign up

Export Citation Format

Share Document