The Effects of Perfluorooctane Sulfonate (PFOS) on Physiological Status and Proliferation Capacity of Scenedesmus obliqnus

2012 ◽  
Vol 209-211 ◽  
pp. 1131-1135 ◽  
Author(s):  
De Yong Zhang ◽  
Xiao Lu Xu ◽  
Yin Lu ◽  
Hui Ying Xu ◽  
Hui Min Yan

To evaluate the toxic effects of environmental contaminant PFOS on green algae, Scenedesmus obliqnus was cultured in media containing serially diluted PFOS for evaluation of proliferation capacity and some physiological indexes. Within 96h, PFOS doses ≥50 mg/L all inhibited the proliferation speed of Scenedesmus obliqnus(p<0.05). The 96h EC50 value of PFOS was determined to be 126 mg/L. In a chronic experiment with 8 days of PFOS treatment, chlorophyll a content, which was inhibited by even the lowest dose, showed to be the most sensitive index to PFOS contamination. PFOS doses ≥100mg/L all resulted in decreasing of antioxidant enzyme activity and increasing of MDA content in Scenedesmus obliqnus(P<0.05).

2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Ma ◽  
Caoyang Wu ◽  
Shihan Liang ◽  
Yuhao Yuan ◽  
Chunjuan Liu ◽  
...  

Broomcorn millet (BM), one of the earliest domesticated cereal crops originating in northern China, can tolerate extreme conditions, such as drought and high temperatures, which are prevalent in saline-alkali, arid, and barren landscapes. However, its adaptive mechanism to alkali stress is yet to be comprehensively understood. In this study, 80 and 40 mM standard alkali stress concentrations were used to, respectively, evaluate the alkali tolerance at the germination and seedling stages of 296 BM genotypes. Principal component analysis (PCA), Pearson's correlation analysis, and F-value comprehensive analysis were performed on the germination parameters (germination potential, germination index, germination rate, vigor index, root length/weight, sprout length/weight, and alkali damage rate). Based on their respective F-values, the BM genotypes were divided into five categories ranging from highly alkali resistant to alkali sensitive. To study the response of seedlings to alkaline stress, we investigated the phenotypic parameters (plant height, green leaf area, biomass, and root structure) of 111 genotypes from the above five categories. Combining the parameters of alkali tolerance at the germination and seedling stages, these 111 genotypes were further subdivided into three groups with different alkali tolerances. Variations in physiological responses of the different alkali-tolerant genotypes were further investigated for antioxidant enzyme activity, soluble substances, malondialdehyde (MDA) content, electrolyte leakage rate, and leaf structure. Compared with alkali-sensitive genotypes, alkali-tolerant genotypes had high antioxidant enzyme activity and soluble osmolyte content, low MDA content and electrolyte leakage rate, and a more complete stomata structure. Taken together, this study provides a comprehensive and reliable method for evaluating alkali tolerance and will contribute to the improvement and restoration of saline-alkaline soils by BM.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1779
Author(s):  
Liang Zhang ◽  
Bingbing Gao

Cadmium (Cd) contamination of agricultural soil has become a serious threat to global food security. The present study highlights the effect of added isosteviol in modulating growth physiology and antioxidant defense systems conferring tolerance against cadmium (Cd) stress in wheat. Wheat growth, chlorophyll content, malondialdehyde (MDA) content of leaves, dehydrogenase activity of root, and antioxidant enzyme activity were determined to get an overview of cellular response in conquering Cd-induced oxidative stress damages. The results indicated that wheat germination was inhibited under Cd2+ concentration at 10 µM. The presence of isosteviol and gibberellic acid (GA) significantly alleviated the inhibitory effect on the growth of wheat seedling under 10 µM Cd2+ stress. Moreover, different concentrations of isosteviol and GA regulated the physiological changes of wheat under Cd stress: more chlorophyll a + b content; less MDA content; and higher dehydrogenase activity of root and antioxidant enzyme activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as compared to Cd alone in wheat seedling. The present study thus suggests a possible role of isosteviol in amelioration of Cd stress by increasing chlorophyll content and root dehydrogenase activity, which also could reduce oxidative damage of the cell membrane by regulating the activities of antioxidant enzymes in wheat seedling.


2019 ◽  
Vol 136 ◽  
pp. 06002
Author(s):  
Liu Yang ◽  
Bixia Zheng ◽  
Xiao Zhang ◽  
Tonghao Cui ◽  
Xianmin Xia ◽  
...  

In order to study the changes of the photosynthetic pigment content, antioxidant enzyme activity and osmotic adjuster content, the Prunus davidiana seedlings were cultured into Hoagland nutrient solution which added various concentrations of iron solution. Then the results showed that photosynthetic pigment content and antioxidant enzyme activity were all higher in iron-treated P. davidiana seedlings, compared with that in control seedlings. When increased iron concentration up to 10 mg/L, the chlorophyll a, chlorophyll b and the total chlorophyll content gradually rose, but decreased at iron concentrations of 20, 30, 40 and 60 mg/L. Irrigating iron concentration of 60 mg/L was the best way to increase the activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and malondialdehyde (MDA) content. But for chlorophyll a/b ratio, it was the highest in no-iron seedlings. Moreover, the soluble protein content was the highest at iron concentration of 30 mg/L, but the lowest at 10 mg/L. Thus, the study concluded that irrigating iron solution could improve the growth and resistance to adverse circumstances of P. davidiana seedlings.


2003 ◽  
Vol 14 (03) ◽  
pp. 134-143 ◽  
Author(s):  
James J. Klemens ◽  
Robert P. Meech ◽  
Larry F. Hughes ◽  
Satu Somani ◽  
Kathleen C.M. Campbell

This study's purpose was to determine if a correlation exists between cochlear antioxidant activity changes and auditory function after induction of aminoglycoside (AG) ototoxicity. Two groups of five 250-350 g albino guinea pigs served as subjects. For 28 days, albino guinea pigs were administered either 200 mg/kg/day amikacin, or saline subcutaneously. Auditory brainstem response testing was performed prior to the first injection and again before sacrifice, 28 days later. Cochleae were harvested and superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase activities and malondialdehyde levels were measured. All antioxidant enzymes had significantly lower activity in the amikacin group (p ≤ 0.05) than in the control group. The difference in cochlear antioxidant enzyme activity between groups inversely correlated significantly with the change in ABR thresholds. The greatest correlation was for the high frequencies, which are most affected by aminoglycosides. This study demonstrates that antioxidant enzyme activity and amikacin-induced hearing loss significantly covary.


Sign in / Sign up

Export Citation Format

Share Document