scholarly journals Bulked Segregant RNA-Seq Provides Distinctive Expression Profile Against Powdery Mildew in the Wheat Genotype YD588

2021 ◽  
Vol 12 ◽  
Author(s):  
Pengtao Ma ◽  
Liru Wu ◽  
Yufei Xu ◽  
Hongxing Xu ◽  
Xu Zhang ◽  
...  

Wheat powdery mildew, caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a destructive disease leading to huge yield losses in production. Host resistance can greatly contribute to the control of the disease. To explore potential genes related to the powdery mildew (Pm) resistance, in this study, we used a resistant genotype YD588 to investigate the potential resistance components and profiled its expression in response to powdery mildew infection. Genetic analysis showed that a single dominant gene, tentatively designated PmYD588, conferred resistance to powdery mildew in YD588. Using bulked segregant RNA-Seq (BSR-Seq) and single nucleotide polymorphism (SNP) association analysis, two high-confidence candidate regions were detected in the chromosome arm 2B, spanning 453,752,054-506,356,791 and 584,117,809-664,221,850 bp, respectively. To confirm the candidate region, molecular markers were developed using the BSR-Seq data and mapped PmYD588 to an interval of 4.2 cM by using the markers YTU588-004 and YTU588-008. The physical position was subsequently locked into the interval of 647.1–656.0 Mb, which was different from those of Pm6, Pm33, Pm51, Pm52, Pm63, Pm64, PmQ, PmKN0816, MlZec1, and MlAB10 on the same chromosome arm in its position, suggesting that it is most likely a new Pm gene. To explore the potential regulatory genes of the R gene, 2,973 differentially expressed genes (DEGs) between the parents and bulks were analyzed using gene ontology (GO), clusters of orthologous group (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Based on the data, we selected 23 potential regulated genes in the enriched pathway of plant-pathogen interaction and detected their temporal expression patterns using an additional set of wheat samples and time-course analysis postinoculation with Bgt. As a result, six disease-related genes showed distinctive expression profiles after Bgt invasion and can serve as key candidates for the dissection of resistance mechanisms and improvement of durable resistance to wheat powdery mildew.

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Piyi Xing ◽  
Xueying Zhang ◽  
Yinguang Bao ◽  
Yuhai Wang ◽  
Honggang Wang ◽  
...  

Powdery mildew is one of the most important diseases of wheat. In this study, the leaf RNA samples of wheat NILs carrying powdery mildew resistant and susceptible Pm2 alleles (L031 and Chancellor) and its F1 hybrid at two time points (16 h and 96 h postinoculation) were used for RNA-seq analysis. We carry comparison between similar materials at different times and between different materials at same times. The overlapping DEGs between the dominant phenotypes (L031 and F1 hybrid) and the recessive phenotype (Chancellor) were 1028 and 2214 DEGs, which were clearly lower than those between the dominant and recessive parents and thus could provide relatively accurate and valuable information. GO and KEGG enrichment analysis of DEGs revealed that other than the expected defense-related genes, differential up- and downregulation of genes from many other signaling networks were also involved. Comparative transcriptome analysis also revealed that early-stage postinoculation is important and suitable time points to study expression profiles and signaling pathways of resistance-related genes following fungal inoculation. qRT-PCR analyses showed highly consistent expression patterns of genes with RNA-seq data. The results will aid in the identification of genes and signaling pathways involved in powdery mildew response in wheat.


2020 ◽  
Author(s):  
Xian Xin Wu ◽  
Yue Gao ◽  
Qiang Bian ◽  
Qian Sun ◽  
Xin Yu Ni ◽  
...  

Abstract Background: Wheat powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici ( Bgt ), is a serious disease of wheat worldwide that can cause significant yield losses. Growing resistant cultivars is the most cost-effective and eco-soundly strategy to manage the disease. Therefore, a high breeding priority is to identify genes that can be readily used either singly or in combination for effective resistance to powdery mildew and alos in combination with genes for resistance to other diseases. Yunnan Province, with complex and diverse ecological environments and climates, is one of the main wheat growing regions in China. This region provides initial inoculum for starting epidemics of wheat powdery mildew in the region and other regions and thus, plays a key role in the regional and large-scale epidemics of the disease throughout China. The objectives of this study were to evaluate seedling resistance of 69 main wheat cultivars to powdery mildew and to determine the presence of resistance genes Pm3 , Pm8 , Pm13 , Pm16 , and Pm21 in these cultivars using gene specific DNA markers. Results: Evaluation of 69 wheat cultivars with six Bgt isolates showed that only four cultivars were resistant to all tested isolates, indicating that the overall level of powdery mildew resistance of Yunnan wheat cultivars is inadequate. The molecular marker results showed that 27 cultivars likely have at least one of these genes. Six cultivars were found likely to have Pm3 , 18 likely to have Pm8 , 5 likely to have Pm16 , and 3 likely to have Pm21 . No cultivar was found to carry Pm13 . Conclusion: The information on the presence of the Pm resistance genes in Yunnan wheat cultivars can be used in future wheat disease breeding programs. In particular, cultivars carrying Pm21 , which is effective against all Bgt races in China, should be pyramided with other effective genes to developing new cultivars with durable resistance to powdery mildew. Keywords: Blumeria graminis f. sp. tritici , Pm gene, molecular markers, wheat


2021 ◽  
Author(s):  
Jakub Jankowski ◽  
Hye Kyung Lee ◽  
Julia Wilflingseder ◽  
Lothar Hennighausen

SummaryRecently, a short, interferon-inducible isoform of Angiotensin-Converting Enzyme 2 (ACE2), dACE2 was identified. ACE2 is a SARS-Cov-2 receptor and changes in its renal expression have been linked to several human nephropathies. These changes were never analyzed in context of dACE2, as its expression was not investigated in the kidney. We used Human Primary Proximal Tubule (HPPT) cells to show genome-wide gene expression patterns after cytokine stimulation, with emphasis on the ACE2/dACE2 locus. Putative regulatory elements controlling dACE2 expression were identified using ChIP-seq and RNA-seq. qRT-PCR differentiating between ACE2 and dACE2 revealed 300- and 600-fold upregulation of dACE2 by IFNα and IFNβ, respectively, while full length ACE2 expression was almost unchanged. JAK inhibitor ruxolitinib ablated STAT1 and dACE2 expression after interferon treatment. Finally, with RNA-seq, we identified a set of genes, largely immune-related, induced by cytokine treatment. These gene expression profiles provide new insights into cytokine response of proximal tubule cells.


2017 ◽  
Vol 69 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Yong Peng ◽  
Huiqin Ma ◽  
Shangwu Chen

Lycium ruthenicum Murr., which belongs to the family Solanaceae, is a resource plant for Chinese traditional medicine and nutraceutical foods. In this study, RNA sequencing was applied to obtain raw reads of L. ruthenicum fruit at different stages of ripening, and a de novo assembly of its sequence was performed. Approximately 52.45 million 100-bp paired-end raw reads were generated from the samples by deep RNA-seq analysis. These short reads were assembled to obtain 164814 contigs, and the contigs were assembled into 84968 non-redundant unigenes using the Trinity method. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group and KEGG (Kyoto Encyclopedia of Genes and Genomes)pathway terms. Digital gene expression analysis was applied to compare gene-expression patterns at different fruit developmental stages. These results contribute to existing sequence resources for Lycium spp. during the fruit-ripening stages, which is valuable for further functional studies of genes involved in L. ruthenicum fruit nutraceutical quality.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yani Dong ◽  
Likang Lyu ◽  
Haishen Wen ◽  
Bao Shi

Long noncoding RNAs (lncRNAs) have been identified to be involved in half-smooth tongue sole (Cynoglossus semilaevis) reproduction. However, studies of their roles in reproduction have focused mainly on the ovary, and their expression patterns and potential roles in the brain and pituitary are unclear. Thus, to explore the mRNAs and lncRNAs that are closely associated with reproduction in the brain and pituitary, we collected tongue sole brain and pituitary tissues at three stages for RNA sequencing (RNA-seq), the 5,135 and 5,630 differentially expressed (DE) mRNAs and 378 and 532 DE lncRNAs were identified in the brain and pituitary, respectively. The RNA-seq results were verified by RT-qPCR. Moreover, enrichment analyses were performed to analyze the functions of DE mRNAs and lncRNAs. Interestingly, their involvement in pathways related to metabolism, signal transduction and endocrine signaling was revealed. LncRNA-target gene interaction networks were constructed based on antisense, cis and trans regulatory mechanisms. Moreover, we constructed competing endogenous RNA (ceRNA) networks. In summary, this study provides mRNA and lncRNA expression profiles in the brain and pituitary to understand the molecular mechanisms regulating tongue sole reproduction.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10425
Author(s):  
Xianxin Wu ◽  
Qiang Bian ◽  
Yue Gao ◽  
Xinyu Ni ◽  
Yanqiu Sun ◽  
...  

Wheat powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is a serious disease of wheat worldwide that can cause significant yield losses. Growing resistant cultivars is the most cost-effective and eco-soundly strategy to manage the disease. Therefore, a high breeding priority is to identify genes that can be readily used either singly or in combination for effective resistance to powdery mildew and also in combination with genes for resistance to other diseases. Yunnan Province, with complex and diverse ecological environments and climates, is one of the main wheat growing regions in China. This region provides initial inoculum for starting epidemics of wheat powdery mildew in the region and other regions and thus, plays a key role in the regional and large-scale epidemics of the disease throughout China. The objectives of this study were to evaluate seedling resistance of 69 main wheat cultivars to powdery mildew and to determine the presence of resistance genes Pm3, Pm8, Pm13, Pm16, and Pm21in these cultivars using gene specific DNA markers. Evaluation of 69 wheat cultivars with six Bgt isolates showed that only four cultivars were resistant to all tested isolates, indicating that the overall level of powdery mildew resistance of Yunnan wheat cultivars is inadequate. The molecular marker results showed that 27 cultivars likely have at least one of these genes. Six cultivars were found likely to have Pm3,18 likely to have Pm8,5 likely to have Pm16,and 3 likely to have Pm21. No cultivar was found to carry Pm13. The information on the presence of the Pmresistance genes in Yunnan wheat cultivars can be used in future wheat disease breeding programs. In particular, cultivars carrying Pm21, which is effective against all Bgtraces in China, should be pyramided with other effective genes to developing new cultivars with durable resistance to powdery mildew.


2018 ◽  
Author(s):  
Matthew Haas ◽  
Martin Mascher ◽  
Claudia Castell-Miller ◽  
Brian J. Steffenson

AbstractSpot blotch, caused byBipolaris sorokiniana(Sacc.) Shoem., is an economically important disease affecting barley (Hordeum vulgareL.). The disease has largely been controlled in the Upper Midwest region of the USA through a suite of quantitative trait loci (QTL) termed the Midwest Six-rowed Durable Resistance Haplotype (MSDRH). These QTL have been bred into all six-rowed Midwest barley cultivars, including the widely used cultivar Morex. We identified a gamma ray- induced Morex mutant (MUT) that exhibits spot blotch susceptibility at the seedling stage. This mutant also spontaneously develops extremely large necrotic lesions in the absence of the pathogen at the adult plant stage. Spot blotch susceptibility at the seedling stage and necrotic lesion formation at the adult plant stage are highly correlated. To start dissecting the molecular responses underlying the observed symptoms at the seedling stage, we conducted a time course RNA-seq experiment comparing the wild type (WT) and the mutant (MUT) Morex at 12, 24 and 36 h afterB. sorokinianainoculation. Mock-inoculated controls were also included. A total of 10,772 and 11,530 genes were differentially expressed between treatments for WT and MUT genotypes, respectively, while 277 and 195 genes were differentially expressed between fungal and mock-inoculated genotypes, respectively. The transcript expression profiles of WT and MUT Morex samples were similar for most treatments. Two genes whose expression was putatively knocked out in the MUT were identified: HORVU3Hr1G019920 (glycine-rich protein) and HORVU5Hr1G120850 (Long- chain-fatty-acid—CoA ligase 1). The latter appears to be genetically intact, but not expressed. Collectively, these data suggest that MUT susceptibility toB. sorokinianais a result of minor, rather than major, differences in the defense responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengpeng Zhang ◽  
Mingxuan Sheng ◽  
Chunyu Du ◽  
Zhe Chao ◽  
Haixia Xu ◽  
...  

Brown adipose tissue (BAT) is specialized for energy expenditure, thus a better understanding of the regulators influencing BAT development could provide novel strategies to defense obesity. Many protein-coding genes, miRNAs, and lncRNAs have been investigated in BAT development, however, the expression patterns and functions of circRNA in brown adipogenesis have not been reported yet. This study determined the circRNA expression profiles across brown adipogenesis (proliferation, early differentiated, and fully differentiated stages) by RNA-seq. We identified 3,869 circRNAs and 36.9% of them were novel. We found the biogenesis of circRNA was significantly related to linear mRNA transcription, meanwhile, almost 70% of circRNAs were generated by alternative back-splicing. Next, we examined the cell-specific and differentiation stage-specific expression of circRNAs. Compared to white adipocytes, nearly 30% of them were specifically expressed in brown adipocytes. Further, time-series expression analysis showed circRNAs were dynamically expressed, and 117 differential expression circRNAs (DECs) in brown adipogenesis were identified, with 77 upregulated and 40 downregulated. Experimental validation showed the identified circRNAs could be successfully amplified and the expression levels detected by RNA-seq were reliable. For the potential functions of the circRNAs, GO analysis suggested that the decreased circRNAs were enriched in cell proliferation terms, while the increased circRNAs were enriched in development and thermogenic terms. Bioinformatics predictions showed that DECs contained numerous binding sites of functional miRNAs. More interestingly, most of the circRNAs contained multiple binding sites for the same miRNA, indicating that they may facilitate functions by acting as microRNA sponges. Collectively, we characterized the circRNA expression profiles during brown adipogenesis and provide numerous novel circRNAs candidates for future brown adipogenesis regulating studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alexandre Hild Aono ◽  
Ricardo José Gonzaga Pimenta ◽  
Ana Letycia Basso Garcia ◽  
Fernando Henrique Correr ◽  
Guilherme Kenichi Hosaka ◽  
...  

The protein kinase (PK) superfamily is one of the largest superfamilies in plants and the core regulator of cellular signaling. Despite this substantial importance, the kinomes of sugarcane and sorghum have not been profiled. Here, we identified and profiled the complete kinomes of the polyploid Saccharum spontaneum (Ssp) and Sorghum bicolor (Sbi), a close diploid relative. The Sbi kinome was composed of 1,210 PKs; for Ssp, we identified 2,919 PKs when disregarding duplications and allelic copies, and these were related to 1,345 representative gene models. The Ssp and Sbi PKs were grouped into 20 groups and 120 subfamilies and exhibited high compositional similarities and evolutionary divergences. By utilizing the collinearity between the species, this study offers insights into Sbi and Ssp speciation, PK differentiation and selection. We assessed the PK subfamily expression profiles via RNA-Seq and identified significant similarities between Sbi and Ssp. Moreover, coexpression networks allowed inference of a core structure of kinase interactions with specific key elements. This study provides the first categorization of the allelic specificity of a kinome and offers a wide reservoir of molecular and genetic information, thereby enhancing the understanding of Sbi and Ssp PK evolutionary history.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1991 ◽  
Author(s):  
Yanping Li ◽  
Shilin Tian ◽  
Xiaojun Yang ◽  
Xin Wang ◽  
Yuhai Guo ◽  
...  

Physcion and chrysophanol induce defense responses against powdery mildew in cucumbers. The combination of these two compounds has synergistic interaction against the disease. We performed RNA-seq on cucumber leaf samples treated with physcion and chrysophanol alone and with their combination. We generated 17.6 Gb of high-quality sequencing data (∼2 Gb per sample) and catalogued the expressions profiles of 12,293 annotated cucumber genes in each sample. We identified numerous differentially expressed genes that exhibited distinct expression patterns among the three treatments. The gene expression patterns of the Chr and Phy treatments were more similar to each other than to the Phy × Chr treatment. The Phy × Chr treatment induced the highest number of differentially expressed genes. This dramatic transcriptional change after Phy × Chr treatment leaves reflects that physcion combined with chrysophanol treatment was most closely associated with induction of disease resistance. The analysis showed that the combination treatment caused expression changes of numerous defense-related genes. These genes have known or potential roles in structural, chemical and signaling defense responses and were enriched in functional gene categories potentially responsible for cucumber resistance. These results clearly demonstrated that disease resistance in cucumber leaves was significantly influenced by the combined physcion and chrysophanol treatment. Thus, physcion and chrysophanol are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to the defense response.


Sign in / Sign up

Export Citation Format

Share Document