scholarly journals Polyketide Derivatives in the Resistance of Gerbera hybrida to Powdery Mildew

2022 ◽  
Vol 12 ◽  
Author(s):  
Anna Mascellani ◽  
Kirsten Leiss ◽  
Johanna Bac-Molenaar ◽  
Milan Malanik ◽  
Petr Marsik ◽  
...  

Powdery mildew is a common disease affecting the commercial production of gerbera flowers (Gerbera hybrida, Asteraceae). Some varieties show a certain degree of resistance to it. Our objective was to identify biomarkers of resistance to powdery mildew using an 1H nuclear magnetic resonance spectroscopy and chemometrics approach in a complex, fully factorial experiment to suggest a target for selection and breeding. Resistant varieties were found to differ from those that were susceptible in the metabolites of the polyketide pathway, such as gerberin, parasorboside, and gerberinside. A new compound probably involved in resistance, 5-hydroxyhexanoic acid 3-O-β-D-glucoside, was described for the first time. A decision tree model was built to distinguish resistant varieties, with an accuracy of 57.7%, sensitivity of 72%, and specificity of 44.44% in an independent test. Our results suggest the mechanism of resistance to powdery mildew in gerbera and provide a potential tool for resistance screening in breeding programs.

2021 ◽  
pp. 82-87
Author(s):  
Т. G. Derova ◽  
N. V. Shishkin ◽  
О. S. Kononenko

Systematic work on the development of winter wheat varieties possessing resistance to a complex of the most harmful diseases has been carried out in the Agricultural Research Center “Donskoy” since the early 1970s. During this period, there has been created a large number of varieties that possess resistance to 3–4 diseases in conditions of infectious backgrounds of pathogens. Due to the analysis of varieties, there was identified a small number of varieties resistant to powdery mildew. Powdery mildew, caused by the fungus Blumeria graminis (DC) Speer, annually occurs on wheat, affecting all aboveground plant organs. Earlier the FSBSI “ARC “Donskoy” developed and widely cultivated the medium-resistant varieties ‘Tanais’ (2006), ‘Nakhodka’ (2015), ‘Etyud’, ‘Shef’, ‘Lilit’ (2016), ‘Volnitsa’ (2017), ‘Polina’, Yubiley Dona’ , ‘Podarok Krymu’ (2018), ‘Niva Dona’ (2019). In recent years, breeders have developed such varieties with high resistance to the pathogen as ‘Donskaya Step’ (2016), ‘Premiera’, ‘Univer’ (2018), ‘Priazovye’, ‘Zolotoy Kolos’ (2020). But the breeding process of varieties for resistance to powdery mildew is difficult, since it is explained by the small number of effective resistance genes and their sources. Therefore, the purpose of the current study was to identify new sources of resistance to the pathogen. Under the conditions of artificial infection, during last 10 years there was conducted a testing of 302 varieties and samples of winter wheat of domestic and foreign breeding. There have not been identified immune varieties. There was identified a small percentage (15.2) of varieties that were resistant to the pathogen. Among the Russian varieties they were ‘L 3191 k-5-8’, ‘Akhmat’, ‘Alievich’, ‘Barier’, ‘Ulyasha’, ‘Knyaginya Olga’, which were not attacked by the disease over the years of testing. Among foreign varieties, the varieties ‘Bombus’, ‘Sailor’ (France), ‘Etana’, ‘Rotax’, ‘KVS-Emil’ (Germany), ‘Fidelius’ (Austria), ‘MV 09-04’ (Hungary) were identified as the best ones in their resistance to powdery mildew. All identified sources of resistance have been recommended in breeding programs for immunity.


2017 ◽  
Vol 47 (4) ◽  
pp. 440-447 ◽  
Author(s):  
Hudson de Oliveira Rabelo ◽  
Lucas da Silva Santos ◽  
Guilherme Matos Martins Diniz ◽  
Marcus Vinicius Marin ◽  
Leila Trevisan Braz ◽  
...  

ABSTRACT Genetic resistance is one of the most suitable strategies to control cucurbit powdery mildew (CPM) on melon, incited by Podosphaera xanthii or Golovinomyces orontii. However, many races of these pathogens have been reported worldwide in recent years, what may compromise the effectiveness of this method. Thus, annual surveys of CPM races and the screening of germplasm for new sources of genetic resistance provide a vital support to melon breeding programs. This study aimed at identifying a natural population of CPM race under greenhouse conditions, as well as evaluating the reaction of local and exotic melon germplasm for CPM-resistance. CPM race identity was based on the reaction of eight race differentials: Védrantais, Nantais Oblong, PMR 45, PMR 5, WMR 29, Edisto 47, PI 414723 and PI 124111. Fifty-nine melon genotypes were evaluated, 53 of them being germplasm accessions, and six net melon elite-inbred lines, besides two net melon-type cultivars (Louis and Fantasy). Plants were evaluated using a visual scale for leaf lesions. The causal pathogen was confirmed to be P. xanthii, based on the presence of fibrosin bodies in conidia and the complete resistance response of winter melon (Benincasa hispida). Race 4 was identified for the first time in the São Paulo state, Brazil. Genotypes A19, A30, A32, C67, C384, JAB-3, JAB-7, JAB-9, JAB-11, JAB-18, JAB-20 and Solarking showed to be resistant to the race 4.


2019 ◽  
Author(s):  
Kent Griffith ◽  
Clare Grey

Nb18W8O69 (9Nb2O5×8WO3) is the tungsten-rich end-member of the Wadsley–Roth crystallographic shear (cs) structures within the Nb2O5–WO3 series. It has the largest block size of any known, stable Wadsley–Roth phase, comprising 5 ´ 5 units of corner-shared MO6 octahedra between the shear planes, giving rise to 2 nm ´ 2 nm blocks. Rapid lithium intercalation is observed in this new candidate battery material and 7Li pulsed field gradient nuclear magnetic resonance spectroscopy – measured in a battery electrode for the first time at room temperature – reveals superionic lithium conductivity. In addition to its promising rate capability, Nb18W8O69 adds a piece to the larger picture of our understanding of high-performance Wadsley–Roth complex metal oxides.


Author(s):  
O. D. Golyaeva ◽  
O. V. Kurashev ◽  
S. D. Knyazev ◽  
А. Yu. Bakhotskaya

The main goal of the scientific institution was and remains to improve the assortment of fruit and berry crops for the development of domestic horticulture. Black currant breeding at VNIISPK was started by A.F Tamarova and continued by the doctor of agricultural Sciences T.P.Ogoltsova and doctor of agricultural Sciences S.D. Knyazev. A long-term breeding program has been developed. The main goals of the program are to create black currant cultivars with continuous resistance to diseases, first of all powdery mildew, as wells resistance to pests, i.e. bud mite. As a result of the long-term work, over 40 black currant cultivars have been developed, 14 of them are zoned. Red currant breeding was led by the candidate of agricultural Sciences L.V. Bayanova; since 2001 the work has been continued by the candidate of agricultural Sciences O.D. Golyaeva. ‘Heinemanns Rote Spӓtlese’, the descendant of R. multiflorum Kit., was involved in the red currant breeding for the first time in Russia. On its genetic basis, a series of late maturing cultivars with long and dense racemes was created. At the Institute, in total 21cultivars of red currants have been developed, 13 of them are zoned. At present, red currant cultivars make up 25.5% of the zoned assortment in Russia. The first research on gooseberries was stated by V.P. Semakin and A.F Tamarova; since 1992 the systematic gooseberry breeding has been carried out by the candidate of agricultural Sciences O.V. Kurashev. On the basis of Grossularia robusta, we have created gooseberry forms that are resistant to powdery mildew and leaf spots. These forms are highly productive, weakly thorned, having bush habit suitable for mechanized harvest. The result of breeding activities was the transfer of 6 gooseberry cultivars to State agricultural testing: ‘Solnechny Zaychik’, ‘Nekrasovsky’, ‘Yupiter’, ‘Zemlianichny’, ‘Moryachok’ and ‘Discovery’.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marisa Maia ◽  
António E. N. Ferreira ◽  
Rui Nascimento ◽  
Filipa Monteiro ◽  
Francisco Traquete ◽  
...  

Abstract Vitis vinifera, one of the most cultivated fruit crops, is susceptible to several diseases particularly caused by fungus and oomycete pathogens. In contrast, other Vitis species (American, Asian) display different degrees of tolerance/resistance to these pathogens, being widely used in breeding programs to introgress resistance traits in elite V. vinifera cultivars. Secondary metabolites are important players in plant defence responses. Therefore, the characterization of the metabolic profiles associated with disease resistance and susceptibility traits in grapevine is a promising approach to identify trait-related biomarkers. In this work, the leaf metabolic composition of eleven Vitis genotypes was analysed using an untargeted metabolomics approach. A total of 190 putative metabolites were found to discriminate resistant/partial resistant from susceptible genotypes. The biological relevance of discriminative compounds was assessed by pathway analysis. Several compounds were selected as promising biomarkers and the expression of genes coding for enzymes associated with their metabolic pathways was analysed. Reference genes for these grapevine genotypes were established for normalisation of candidate gene expression. The leucoanthocyanidin reductase 2 gene (LAR2) presented a significant increase of expression in susceptible genotypes, in accordance with catechin accumulation in this analysis group. Up to our knowledge this is the first time that metabolic constitutive biomarkers are proposed, opening new insights into plant selection on breeding programs.


1969 ◽  
Vol 11 (3) ◽  
pp. 587-591 ◽  
Author(s):  
T. N. Khan

Variability in the host-reaction of barley to infection by Drechslera teres was examined in the parents and progeny of selected crosses under different environmental conditions of testing.The Ethiopian variety C.I. 5791 exhibits a consistently high level of resistance under a range of environmental conditions, which is in contrast to the Manchurian variety C.I. 2330. The sensitivity of the genes for resistance possessed by these varieties to environmental modifications is considered to depend upon their respective genetic backgrounds. Furthermore, variability of host reaction in the progeny of these resistant varieties was shown to be influenced by the genetic background of the susceptible parent used.The implications of these findings in the conduct and interpretation of genetic studies and in backcross breeding programs is discussed.


2018 ◽  
Vol 19 (3) ◽  
pp. 258-264
Author(s):  
David H. Gent ◽  
Briana J. Claassen ◽  
Megan C. Twomey ◽  
Sierra N. Wolfenbarger

Powdery mildew (caused by Podosphaera macularis) is one of the most important diseases of hop in the western United States. Strains of the fungus virulent on cultivars possessing the resistance factor termed R6 and the cultivar Cascade have become widespread in the Pacific Northwestern United States, the primary hop producing region in the country, rendering most cultivars grown susceptible to the disease at some level. In an effort to identify potential sources of resistance in extant germplasm, 136 male accessions of hop contained in the U.S. Department of Agriculture collection were screened under controlled conditions. Iterative inoculations with three isolates of P. macularis with varying race identified 23 (16.9%) accessions with apparent resistance to all known races of the pathogen present in the Pacific Northwest. Of the 23 accessions, 12 were resistant when inoculated with three additional isolates obtained from Europe that possess novel virulences. The nature of resistance in these individuals is unclear but does not appear to be based on known R genes. Identification of possible novel sources of resistance to powdery mildew will be useful to hop breeding programs in the western United States and elsewhere.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fiza Liaquat ◽  
Muhammad Farooq Hussain Munis ◽  
Samiah Arif ◽  
Urooj Haroon ◽  
Jianxin Shi ◽  
...  

Schima superba (Theaceae) is a subtropical evergreen tree and is used widely for forest firebreaks and gardening. It is a plant that tolerates salt and typically accumulates elevated amounts of manganese in the leaves. With large ecological amplitude, this tree species grows quickly. Due to its substantial biomass, it has a great potential for soil remediation. To evaluate the thorough framework of the mRNA, we employed PacBio sequencing technology for the first time to generate S. Superba transcriptome. In this analysis, overall, 511,759 full length non-chimeric reads were acquired, and 163,834 high-quality full-length reads were obtained. Overall, 93,362 open reading frames were obtained, of which 78,255 were complete. In gene annotation analyses, the Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Genes (COG), Gene Ontology (GO), and Non-Redundant (Nr) databases were allocated 91,082, 71,839, 38,914, and 38,376 transcripts, respectively. To identify long non-coding RNAs (lncRNAs), we utilized four computational methods associated with protein families (Pfam), Cooperative Data Classification (CPC), Coding Assessing Potential Tool (CPAT), and Coding Non-Coding Index (CNCI) databases and observed 8,551, 9,174, 20,720, and 18,669 lncRNAs, respectively. Moreover, nine genes were randomly selected for the expression analysis, which showed the highest expression of Gene 6 (Na_Ca_ex gene), and CAX (CAX-interacting protein 4) was higher in manganese (Mn)-treated group. This work provided significant number of full-length transcripts and refined the annotation of the reference genome, which will ease advanced genetic analyses of S. superba.


Author(s):  
Reginah Pheirim ◽  
Noren Singh Konjengbam ◽  
Mayurakshee Mahanta

Powdery mildew is caused by an obligate parasite Erysiphe pisi and considered as one of the most important constraints causing yield reductions in pea. Development and utilization of genetic resistance is acknowledged as the most effective, economic and environmental friendly method of control. Therefore, development of cultivars with improved resistance to biotic stresses is a primary goal of plant breeding programs throughout the world. Three monogenic sources er1, er2 and Er3 have been described to govern the powdery mildew disease resistance. Several markers have been reported linked to resistant genes at varying distances in different mapping populations. Genetic markers linked to the disease resistance gene make the breeding process more efficient for the use of Marker Assisted Selection (MAS) strategy to aid in obtaining a complete powdery mildew resistance in pea.


Author(s):  
Andrin Gross ◽  
Célia Petitcollin ◽  
Cyril Dutech ◽  
Bayo Ly ◽  
Marie Massot ◽  
...  

AbstractDeciphering the dynamics involved in past microbial invasions has proven difficult due to the inconspicuous nature of microbes and their still poorly known diversity and biogeography. Here we focus on powdery mildew, a common disease of oaks which emerged in Europe at the beginning of the twentieth century and for which three closely related Erysiphe species are mainly involved. The study of herbaria samples combined with an experimental approach of interactions between Erysiphe species led us to revisit the history of this multiple invasion. Contrary to what was previously thought, herbaria sample analyses very strongly suggested that the currently dominant species, E. alphitoides, was not the species which caused the first outbreaks and was described as a new species at that time. Instead, E. quercicola was shown to be present since the early dates of disease reports and to be widespread all over Europe in the beginning of the twentieth century. E. alphitoides spread and became progressively dominant during the second half of the twentieth century while E. quercicola was constrained to the southern part of its initial range, corresponding to its current distribution. A competition experiment provided a potential explanation of this over-invasion by demonstrating that E. alphitoides had a slight advantage over E. quercicola by its ability to infect leaves during a longer period during shoot development. Our study is exemplary of invasions with complexes of functionally similar species, emphasizing that subtle differences in the biology of the species, rather than strong competitive effects may explain patterns of over-invasion and niche contraction.


Sign in / Sign up

Export Citation Format

Share Document