scholarly journals Regulation Mechanism of Exogenous Brassinolide on Bulbil Formation and Development in Pinellia ternata

2022 ◽  
Vol 12 ◽  
Author(s):  
Chenchen Guo ◽  
Jigang Li ◽  
Minghui Li ◽  
Xihang Xu ◽  
Ying Chen ◽  
...  

The bulbil is the propagative organ of the P. ternata, which has a great effect on the yield of P. ternata. It is well known that plant hormones play important roles in bulbil formation and development. However, there is not clear about brassinolide (BR) regulation on bulbil formation and development. In this study, we revealed the effects of BR and BR biosynthesis inhibitors (propiconazole, Pcz) application on the histological observation, starch and sucrose metabolism, photosynthesis pathway, and hormone signaling pathway of P. ternata. The results showed that BR treatment reduced starch catabolism to maltodextrin and maltose in bulbil by decreasing BAM and ISA genes expression and increased cellulose catabolism to D-glucose in bulbil by enhancing edg and BGL genes expression. BR treatment enhanced the photosynthetic pigment content and potential maximum photosynthetic capacity and improved the photoprotection ability of P. ternata by increasing the dissipation of excess light energy to heat, thus reduced the photodamage in the PSII center. BR treatment increased the GA and BR content in bulbil of P. ternata, and decreased the ABA content in bulbil of P. ternata. Pcz treatment increased the level of GA, SL, ABA, and IAA in bulbil of P. ternata. BR regulated the signal transduction of BR, IAA, and ABA to regulate the formation and development of bulbil in P. ternata. These results provide molecular insight into BR regulation on bulbil formation and development.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Min-Ling Cai ◽  
Qi-Lei Zhang ◽  
Jun-Jie Zhang ◽  
Wen-Qiao Ding ◽  
Hong-Ying Huang ◽  
...  

Abstract Sphagneticola trilobata (L.) Pruski is one of the fast-growing malignant weeds in South China. It has severely influenced local biodiversity and native plant habitat. Photosynthesis is the material basis of plant growth and development. However, there are few reports on the photosynthetic transcriptome of S. trilobata. In this study, S. trilobata had a relatively large leaf area and biomass. The gas exchange parameters per unit area of leaves, including net photosynthetic capacity (Pn), intercellular CO2 (Ci), stomatal conductance (Gs), transpiration rate (Tr), water use efficiency (WUE), photosynthetic pigment and Rubisco protein content were higher than those of the native plant Sphagneticola calendulacea (L.) Pruski. On this basis, the differences in photosynthesis pathways between the two Sphagneticola species were analyzed by using the Illumina HiSeq platform. The sequencing results for S. trilobata and S. calendulacea revealed 159,366 and 177,069 unigenes, respectively. Functional annotation revealed 119,350 and 150,846 non-redundant protein database annotations (Nr), 96,637 and 115,711 Swiss-Prot annotations, 49,159 and 60,116 Kyoto Encyclopedia of Genes and Genomes annotations (KEGG), and 83,712 and 97,957 Gene Ontology annotations (GO) in S. trilobata and S. calendulacea, respectively. Additionally, our analysis showed that the expression of key protease genes involved in the photosynthesis pathway, particularly CP43, CP47, PsbA and PetC, had high expression levels in leaves of S. trilobata in comparison to native species. Physiological and transcriptomic analyses suggest the high expression of photosynthetic genes ensures the high photosynthetic capacity of leaves, which is one of the inherent advantages underlying the successful invasion by S. trilobata.


2020 ◽  
Vol 44 ◽  
Author(s):  
Álvaro Luís Pasquetti Berghetti ◽  
Maristela Machado Araujo ◽  
Luciane Almeri Tabaldi ◽  
Suelen Carpenedo Aimi ◽  
Thaise da Silva Tonetto ◽  
...  

ABSTRACT The application of phosphorus (P) doses in the soil can increase the growth of native tree species of economic and environmental interest, such as Cordia trichotoma. Thus, this research aims to evaluate the morphological and the physiological parameters in C. trichotoma seedlings, cultivated in soil with increased P content. The experiment was conducted under greenhouse conditions in pots with 2.5 dm-3 of soil, four doses of P (0, 150, 300 and 450 mg dm-3), and six replicates. P content in the soil, P concentrations in the leaves, morphological attributes (height, stem diameter, aerial dry matter, root dry matter, and leaf area) and physiological attributes (photosynthetic pigment content and chlorophyll α fluorescence) were determined 180 days after transplantation. The increase in the available P content in the soil allowed greater absorption of this element by the plant’s roots, increasing the concentration in the leaves, and therefore favoring the energetic metabolism of the plants. In addition, the higher influx and accumulation of P in the plant when 450 mg dm-3 was used, increased the concentration of the photosynthetic pigments and increased the photosynthetic capacity of the C. trichotoma seedlings. The highest use of the light energy by photosystem II (Fv/Fm = 0.76) was observed in the seedlings cultivated with 450 mg dm-3 of P, with a 95% increase when compared to seedlings without P. Thus, we observed that this tree species is demanding and responsive to the higher P content available in the soil.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 962
Author(s):  
Maciej Jerzy Bernacki ◽  
Anna Rusaczonek ◽  
Weronika Czarnocka ◽  
Stanisław Karpiński

Salicylic acid (SA) is well known hormonal molecule involved in cell death regulation. In response to a broad range of environmental factors (e.g., high light, UV, pathogens attack), plants accumulate SA, which participates in cell death induction and spread in some foliar cells. LESION SIMULATING DISEASE 1 (LSD1) is one of the best-known cell death regulators in Arabidopsis thaliana. The lsd1 mutant, lacking functional LSD1 protein, accumulates SA and is conditionally susceptible to many biotic and abiotic stresses. In order to get more insight into the role of LSD1-dependent regulation of SA accumulation during cell death, we crossed the lsd1 with the sid2 mutant, caring mutation in ISOCHORISMATE SYNTHASE 1(ICS1) gene and having deregulated SA synthesis, and with plants expressing the bacterial nahG gene and thus decomposing SA to catechol. In response to UV A+B irradiation, the lsd1 mutant exhibited clear cell death phenotype, which was reversed in lsd1/sid2 and lsd1/NahG plants. The expression of PR-genes and the H2O2 content in UV-treated lsd1 were significantly higher when compared with the wild type. In contrast, lsd1/sid2 and lsd1/NahG plants demonstrated comparability with the wild-type level of PR-genes expression and H2O2. Our results demonstrate that SA accumulation is crucial for triggering cell death in lsd1, while the reduction of excessive SA accumulation may lead to a greater tolerance toward abiotic stress.


2021 ◽  
pp. 1-18
Author(s):  
Pedro Gómez-Vera ◽  
Héctor Blanco-Flores ◽  
Ana Marta Francisco ◽  
Jimmy Castillo ◽  
Wilmer Tezara

Summary Studies on the effect of nanofertilizers (NF) in physiological performance of plants is scarce, especially that related to substances encapsulated into silicon dioxide (SiO2) nanoparticles in cocoa plants. The effect of foliar application of SiO2-NF on nutrient contents, gas exchange, photochemical activity, photosynthetic pigments, total soluble protein (TSP), photosynthetic nitrogen use efficiency (PNUE), and growth in seedlings of two cocoa clones (OC-61 and BR-05) in a greenhouse was assessed. Spraying with SiO2-NF increased net photosynthetic rate (A) by 16 and 60% and electron transport rate (J) by 52 and 162% in clones OC-61 and BR-05, respectively, without changes in photosynthetic pigment concentration in either clone. The SiO2-NF caused a decrease of 37 and 22% in stomatal conductance in OC-61 and BR-05, respectively; a similar trend was observed in transpiration rate, causing an increase of 42 and 100% in water use efficiency in OC-61 and BR-05, respectively. In both clones, diameter of graft increased on average 28% with SiO2-NF. Higher photosynthetic capacity was related to an increase in leaf N, P, and TSP. A significant reduction in PNUE (A/N ratio) was found in OC-61, whereas in BR-05 PNUE increased after spraying with SiO2-NF. Overall, spraying with SiO2-NF had a positive effect on photosynthetic processes in both cocoa clones, associated with an increase in nutrients content, which translated into improved growth. A differential physiological response to spraying with SiO2-NF between clones was also found, with BR-05 being the clone with a better physiological response during the establishment and development stages.


Author(s):  
Maria Cristina Sorrentino ◽  
Fiore Capozzi ◽  
Chiara Amitrano ◽  
Gaetano De Tommaso ◽  
Carmen Arena ◽  
...  

AbstractThe contamination of environments by heavy metals has become an urgent issue causing undesirable accumulations and severe damages to agricultural crops, especially cadmium and lead which are among the most widespread and dangerous metal pollutants worldwide. The selection of proper species is a crucial step in many plant-based restoration approaches; therefore, the aim of the present work was to check for early morphophysiological responsive traits in three cultivars of Cynara cardunculus (Sardo, Siciliano, and Spagnolo), helping to select the best performing cultivar for phytoremediation. For all three tested cultivars, our results indicate that cardoon displays some morphophysiological traits to face Cd and Pb pollution, particularly at the root morphology level, element uptake ability, and photosynthetic pigment content. Other traits show instead a cultivar-specific behavior; in fact, stomata plasticity, photosynthetic pattern, and antioxidant power provide different responses, but only Spagnolo cv. achieves a successful strategy attaining a real resilience to metal stress. The capacity of Spagnolo plants to modify leaf structural and physiological traits under heavy metal contamination to maintain high photosynthetic efficiency should be considered an elective trait for its use in contaminated environments.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 517 ◽  
Author(s):  
Giulia Costanzo ◽  
Maria Rosaria Iesce ◽  
Daniele Naviglio ◽  
Martina Ciaravolo ◽  
Ermenegilda Vitale ◽  
...  

Peel, pulp and seed extracts of three mandarin varieties, namely Phlegraean mandarin (Citrus reticulata), Kumquat (Citrus japonica), and Clementine (Citrus clementina) were compared and characterised in terms of photosynthetic pigment content, total polyphenols amount, antioxidant activity and vitamin C to assess the amount of functional compounds for each cultivar. The highest polyphenols content was found in the Phlegraean mandarin, especially in peel and seeds, whereas Kumquat exhibited the highest polyphenols amount in the pulp. The antioxidant activity was higher in the peel of Phlegraean mandarin and clementine compared to Kumquat, which showed the highest value in the pulp. The antioxidant activity peaked in the seeds of Phlegraean mandarin. The vitamin C in the Phlegraean mandarin was the highest in all parts of the fruit, especially in the seeds. Total chlorophyll content was comparable in the peel of different cultivars, in the pulp the highest amount was found in clementine, whereas kumquat seeds showed the greatest values. As regards total carotenoids, peel and pulp of clementine exhibited higher values than the other two cultivars, whereas the kumquat seeds were the richest in carotenoids. Among the analysed cultivars Phlegraean mandarin may be considered the most promising as a source of polyphenols and antioxidants, compared to the clementine and Kumquat, especially for the functional molecules found in the seeds. Moreover, regardless of cultivars this study also highlights important properties in the parts of the fruit generally considered wastes.


2013 ◽  
Vol 807-809 ◽  
pp. 1010-1014
Author(s):  
Gan Wen Lie ◽  
Guang Hua Lie ◽  
Ding Chao Pan ◽  
Long Hua Ye ◽  
Dong Yu Li

By using a new kind of single-beam normalized photo-acoustic tomography spectroscopy (PAS-CT) technology with non-damage detection, the photo-acoustic tomography spectroscopy and optical absorption properties of green and yellow leaves ofBauhinia blakeanawere studied. The results show that: the photo-acoustic tomography spectroscopy ofBauhinia blakeanaleaves could be obtained from different chopping frequency and different sample positions, and photosynthetic pigment content of their leaves is closely related to their photosynthetic intensity. The more photosynthetic pigment content the leaves ofBauhinia blakeanacontain, the bigger optical absorption coefficient and the higher photosynthetic efficiency they have. The photosynthetic pigment content of the green leaves ofBauhinia blakeanais higher than that of the yellow ones. As a result, the photosynthesis of green leaves is better than that of the yellow ones. According to the results of our research, the photosynthetic efficiency ofBauhinia blakeanacould be improved and its growth time could be effectively controlled to enhance the growth ofBauhinia blakeana. Furthermore, it could play an important role on the development of forestry, and meet the need of forest for 6 billion people. The research showed high science value to the study and applications of the photosynthesis of plants.


Sign in / Sign up

Export Citation Format

Share Document