scholarly journals Keeping Track of Greenhouse Gas Emission Reduction Progress and Targets in 167 Cities Worldwide

2021 ◽  
Vol 3 ◽  
Author(s):  
Ting Wei ◽  
Junliang Wu ◽  
Shaoqing Chen

Actions in cities shape the outcome of greenhouse gas (GHG) emission mitigation and our climate change response. Accurate and consistent carbon inventories are essential for identifying the main sources of emissions and global comparison of carbon reduction progress and would help inform targeted policies for low-carbon transition. To identify the effectiveness of historical carbon reduction policies, our study conducted energy-related GHG emission inventories for 167 globally distributed cities with information from different sectors, and assessed the city-scale near-term, mid-term, and long-term goals carbon mitigation targets from 2020 to 2050. On this basis, we propose mitigation strategies to achieve local and global climate targets. We found that, although Asian cities are the biggest carbon emitters in totals, the per capita GHG emissions of cities in developed countries are still generally higher than that in developing countries. In terms of sectors, the GHG emissions from the stationary energy uses (such as residential, commercial, and industrial buildings) and transportation sector contributed the most. However, cities in more developed nations have been inclined to set absolute carbon reduction targets before 2050, while intensity reduction target has been largely set for cities at the stage of rapid economic growth and accelerated industrialization. More ambitious and easily-tracked climate targets should be proposed by cities and more effective measures of reducing GHG emissions are required to stay consistent with the global ambition of climate change mitigation.

Author(s):  
Aaiysha Khursheed ◽  
George Simons ◽  
Brad Souza ◽  
Jennifer Barnes

Over the past few decades, interest in the effects of greenhouse gas (GHG) emissions on global climate change has peaked. Increasing temperatures worldwide have been blamed for numerous negative impacts on agriculture, weather, forestry, marine ecosystems, and human health. The U.S. Environmental Protection Agency reports that the primary GHG emitted in the U.S. is carbon dioxide (CO2), most of which stems from fossil fuel combustion [1]. In fact, CO2 represents approximately 85% of all GHG emissions nationwide. The other primary GHGs include nitrous oxide (N2O), methane (CH4), ozone (O3), and fluorinated gases. Since the energy sector is responsible for a majority of the GHGs released into the atmosphere, policies that address their mitigation through the production of electricity using renewable fuels and distributed generation are of significant interest. Use of renewable fuels and clean technologies to meet energy demand instead of relying on traditional electrical grid systems is expected to result in fewer CO2 and CH4 emissions, hence reducing global climate change impacts. Technologies considered cleaner include photovoltaics, wind turbines, and combined heat and power (CHP) devices using microturbines or internal combustion engines. The Self-Generation Incentive Program (SGIP) in California [2] provides incentives for the installation of these technologies under certain circumstances. This paper assesses the GHG emission impacts from California’s SGIP during the 2005 program year by estimating the reductions in CO2 and CH4 released when SGIP projects are in operation. Our analysis focuses on these emissions since these are the two GHGs characteristic of SGIP projects. Results of this analysis show that emissions of GHGs are reduced due to the SGIP. This is because projects operating under this program reduce reliance on electricity generated by conventional power plants and encourage the use of renewable fuels, such as captured waste heat and methane.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 689 ◽  
Author(s):  
She ◽  
Chung ◽  
Han

Harvesting mountain pine beetle-infested forest stands in the northern Colorado Rocky Mountains provides an opportunity to utilize otherwise wasted resources, generate net revenues, and minimize greenhouse gas (GHG) emissions. Timber and bioenergy production are commonly managed separately, and their integration is seldom considered. Yet, degraded wood and logging residues can provide a feedstock for bioenergy, while the sound wood from beetle-killed stands can still be used for traditional timber products. In addition, beneficial greenhouse gas emission (GHG) savings are often realized only by compromising net revenues during salvage harvest where beetle-killed wood has a relatively low market value and high harvesting cost. In this study we compared Sequential and Integrated decision-making scenarios for managing the supply chain from beetle-killed forest salvage operations. In the Sequential scenario, timber and bioenergy production was managed sequentially in two separate processes, where salvage harvest was conducted without considering influences on or from bioenergy production. Biomass availability was assessed next as an outcome from timber production managed to produce bioenergy products. In the Integrated scenario, timber and bioenergy production were managed jointly, where collective decisions were made regarding tree salvage harvest, residue treatment, and bioenergy product selection and production. We applied a multi-objective optimization approach to integrate the economic and environmental objectives of producing timber and bioenergy, and measured results by total net revenues and total net GHG emission savings, respectively. The optimization model results show that distinctively different decisions are made in selecting the harvesting system and residue treatment under the two scenarios. When the optimization is fully economic-oriented, 49.6% more forest areas are harvested under the Integrated scenario than the Sequential scenario, generating 12.3% more net revenues and 50.5% more net GHG emission savings. Comparison of modelled Pareto fronts also indicate the Integrated decision scenario provides more efficient trade-offs between the two objectives and performs better than the Sequential scenario in both objectives.


2020 ◽  
Vol 12 (19) ◽  
pp. 8214
Author(s):  
Toshiro Semba ◽  
Yuji Sakai ◽  
Miku Ishikawa ◽  
Atsushi Inaba

According to the Ellen MacArthur Foundation, 73% of used clothing is landfilled or incinerated globally and greenhouse gas (GHG) emissions from fabric manufacturing in 2015 amounted to 1.2 billion tons. It must be reduced in the future, especially by reusing and recycling used clothing. Based on this perspective, researchers calculated the energy consumption and GHG emissions associated with reusing and recycling used clothing globally with a life cycle assessment (LCA). However, no study was conducted so far to estimate the total GHG emission reductions in Japan by reusing and recycling used clothing. In this study, the amount of used clothing currently discharged from households as combustible and noncombustible waste and their fiber types were estimated using literature. Then, the methods for reusing and recycling of used clothing were categorized into the following 5 types based on fiber type, that is, “reuse overseas,” “textile recycling to wipers,” “fiber recycling,” “chemical recycling” and “thermal recycling.” After that, by applying LCA, the GHG emission reductions by above 5 methods were estimated, based on the annual discharged weights of each fiber type. Consequently, the total GHG emissions reductions by reusing and recycling 6.03 × 108 kg of used clothing totally were estimated around 6.60 × 109 kg CO2e, to range between 6.57 × 109 kg CO2e and 6.64 × 109 kg CO2e, which depended on the type of “chemical recycling.” The largest contribution was “reuse overseas,” which was 4.01 × 109 kg CO2e corresponded to approximately 60% of the total reduction. Where, it was assumed that used clothing were exported from Japan to Malaysia which was currently the largest importing country. In this case, GHG emissions to manufacture new clothing in China, the largest country currently to export them to Japan, can be avoided, which are 29.4 kg CO2e and 32.5 kg CO2e respectively for 1 kg jeans and 1 kg T-shirts. Adding the GHG emissions for overseas transportation to this, on average, 32.0 kg CO2e per kg of used clothing was reduced by “reuse overseas,” which was 19.6 times larger than GHG emissions by incineration, 1.63 kg CO2e per kg, in which carbon neutrality for cotton was not counted. As the result, the total GHG emission reductions above mentioned, around 6.60 × 109 kg CO2e, corresponds to 70% of the GHG emissions by incineration of total household garbage in Japan.


Soil Research ◽  
2018 ◽  
Vol 56 (7) ◽  
pp. 724 ◽  
Author(s):  
Graeme D. Schwenke ◽  
Philippa M. Brock ◽  
Bruce M. Haigh ◽  
David F. Herridge

To contribute to national greenhouse gas emissions (GHG) reduction targets, grain growers need strategies that minimise emissions associated with grain production. We used life cycle assessments (LCAs) with field-measured production inputs, grain yields and proteins, legume nitrogen (N2) fixation, and soil nitrous oxide (N2O) and methane (CH4) emissions, to explore mitigation strategies in 3-year crop sequences in subtropical Australia. The sequences were: canola plus 80 kg/ha fertiliser nitrogen (80N)–wheat 85N–barley 65N (CaNWtNBaN), chickpea 0N–wheat 85N–barley 5N (CpWtNBa), chickpea 0N–wheat 5N–chickpea 5N (CpWtCp), and chickpea 0N–sorghum 45N (CpSgN). We also assessed the impacts of split fertiliser N application and urea coated with DMPP, a nitrification inhibitor, on the LCA for the CaNWtNBaN sequence. Total pre-farm plus on-farm GHG emissions varied between 915 CO2-e/ha (CpSgN) and 1890 CO2-e/ha (CaNWtNBaN). Cumulative N2O emitted over the 3-year study varied between 0.479 kg N2O-N/ha (CpWtCp) and 1.400 kg N2O-N/ha (CaNWtNBaN), which constituted 24–44% of total GHG emissions. Fertiliser production accounted for 20% (CpSgN) to 30% (CaNWtNBaN) of total emissions. An extra 4.7 kg CO2-e/ha was emitted for each additional kg N/ha of applied N fertiliser. Three-year CH4 emissions ranged from −1.04 to −0.98 kg CH4-C/ha. Split N and DMPP strategies could reduce total GHG emissions of CaNWtNBaN by 17 and 28% respectively. Results of the study indicate considerable scope for reducing the carbon footprint of subtropical, dryland grains cropping in Australia.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Michael Ayeah Israel ◽  
Joseph Amikuzuno ◽  
Gideon Danso-Abbeam

Abstract Background The adoption of climate-smart agricultural (CSA) practices is expected to improve farmers’ adaptation to climate change and also increase yields while simultaneously curbing greenhouse gas (GHG) emissions. This paper explores the determinants of smallholder farmers’ participation in GHG-emitting activities. It also estimates the impact of CSA activities on reducing GHG emissions. Methods The findings are based on survey data obtained from 350 smallholder farmers in the East Gonja district of Northern Ghana. We adopted the generalized Poisson regression model in identifying factors influencing farmers’ participation in the GHG emission practices and inverse-probability-weighted regression adjustment (IPWRA) to estimate the impact of CSA adoption on GHG emissions. Results Most farming households engaged in at least one emission activity. The findings of the generalized Poisson model found that wealthier households, higher education, and households with access to extension services were less likely to participate in GHG emission activities. There was also evidence that CSA adoption significantly reduces GHG emissions. Conclusion Advocacy in CSA adoption could be a necessary condition for environmental protection through the reduction of GHG emissions.


2021 ◽  
Vol 48 (5) ◽  
pp. 328-342
Author(s):  
M. A Adeyemi ◽  
E. O. Akinfala

Greenhouse gases are becoming devastating on agriculture and environment because of its effect on climate and global warming. The aim of this review is to provide update on livestock greenhouse gases emission and rekindle available mitigation strategies. Recently, global warming and climate change have become one of the most discussed issues globally because of their negative effect on ecosystem worldwide. The livestock sub-sector as a major source of greenhouse gas emission, has been identified to contribute substantially to the recent rise in global warming and climate change. Livestock, most importantly ruminants plays a major role in the emission of methane, one of the potent greenhouse gases. This methane is usually released through enteric fermentation in animals and manure management system, though the latter account for smaller quantity. Estimate of methane emission inventory from livestock in Nigeria showed that 96.15 % of methane produced by livestock was by ruminants with cattle alone accounting for 74.06 %. With this background, strategies to date for reducing methane emissions should centre on ruminant. Efforts to reduce methane emissions from enteric fermentation generally focus on options for improving production efficiency. This has been demonstrated with intensive animal production systems. However, in Nigeria, this system has been successful only for non-ruminants while the extensive and semi extensive systems are being practiced for ruminants. In view of this, options for reducing emissions must be selected to be consistent with country-specific circumstances. Those circumstances should include animal management practices (including cultural traditions), nutrition and economic development priorities.     Les gaz à effet de serre deviennent dévastateurs de l'agriculture et de l'environnement en raison de son effet sur le climat et le réchauffement de la planète. L'objectif de cet examen est de fournir une mise à jour sur les stratégies d'atténuation disponibles des gaz à effet de serre de bétail. Récemment, le réchauffement climatique et le changement climatique sont devenus l'une des questions les plus discutées à l'échelle mondiale en raison de leur effet négatif sur l'écosystème mondial. Le sous-secteur de l'élevage en tant que source majeure d'émissions de gaz à effet de serre, a été identifié pour contribuer de manière substantielle à la hausse récente du réchauffement de la planète et du changement climatique. Le bétail, plus important encore, les ruminants jouent un rôle majeur dans l'émission de méthane, l'un des gaz à effet de serre puissants. Ce méthane est généralement libéré par la fermentation entérique chez les animaux et le système de gestion de fumier, bien que ces derniers représentent une plus petite quantité. L'estimation des stocks d'émissions de méthane provenant du bétail au Nigéria a montré que 96,15% de méthane produites par le bétail étaient par des ruminants avec des bovins à eux-mêmes représentant 74,06%. Avec ce contexte, des stratégies à ce jour pour réduire les émissions de méthane doivent être centrées sur le ruminant. Les efforts visant à réduire les émissions de méthane de la fermentation entérique se concentrent généralement sur les options d'amélioration de l'efficacité de la production. Cela a été démontré avec des systèmes de production d'animaux intensifs. Cependant, au Nigéria, ce système n'a abouti que pour les non-ruminants tandis que les systèmes étendus et semi-étendus sont pratiqués pour les ruminants. Compte tenu de cela, les options de réduction des émissions doivent être sélectionnées pour être cohérentes avec des circonstances spécifiques à chaque pays. Ces circonstances devraient inclure des pratiques de gestion des animaux (y compris des traditions culturelles), des priorités de nutrition et de développement économique


2021 ◽  
Vol 7 (1) ◽  
pp. 13-35
Author(s):  
Nima Norouzi ◽  
Mohammad Ali Dehghani

Taking Iran as the 7th Greenhouse Gas (GHG) emission source of the world, the country contains a high potential for the emission management plans and studies. As the economy is a significant factor in the greenhouse gas emission, studying the economy and GHG emission integrated relations must be taken into account of every climate change and environmental management plan. This paper investigates the relationships among the economic, demographic, foreign policies, and many other domestic and foreign parameters, which are illustrated by sixth Iranian document over development and GHG emission in three progress scenarios made for this plan. In this paper, all the significant GHG emissions such as CO<sub>2</sub>, SO<sub>2</sub>, NO<sub>x</sub>, hydrocarbons, and CO in the period of 2014-2020 are being studied. As the results show, the number of emissions is directly related to domestic and foreign parameters, which means a better economic status in Iran causes an increase in the number of emissions. The foreign policies are more effective in the Iranian economy and emissions than the domestic policies and parameters. The scenarios and the results show that the Iranian economy and energy systems have a significant potential for efficiency development plans. However, one thing is clear that Iranian emissions will be increased to 800 million tons by the end of the plan period (by 2021). This significant increase in the amount indicates the importance of optimization and efficiency development plans in Iran, which is predicted to control and fix this increment around 3-4%.


Author(s):  
Ayanda Pamella Deliwe ◽  
Shelley Beryl Beck ◽  
Elroy Eugene Smith

Greenhouse gas (GHG) emission and its associated effects have been a debate in literature for many years (Hoffman, 2011:5; Williams & Schaefer, 2012:175; Whitmarsh, 2011:690). According to Jackson (2016), climate change is seen as a yearly change within the earth's climate that is a result of changes in its atmosphere, as well as interactions between the atmosphere and other chemical, geologic, geographic and biological factors within the earth's system. Climate change has primarily caused a warming effect of the earth's atmosphere that has affected all aspects of life (Pachauri & Reisinger, 2007:7). While there are limited studies that measure greenhouse gas emissions arising from the entire global food chain, there have been estimates of GHG emissions attributable to global agricultural production (Garnett, 2011:23). Energy consumption is one of the biggest challenges food retailers are facing as it not only increases overhead costs but also GHG emission (Tassou, Hadawey & Marriott, 2011). Garnett (2011) alleges that the food chain produces greenhouse gas (GHG) emissions at all stages in its life cycle, from the farming process and its inputs, through to manufacture, distribution, refrigeration, retailing, food preparation in the home and waste disposal. Technological improvements, while essential, will not be sufficient in reducing GHG emissions. The combination of population growth and rising per capita anticipated consumption of meat and dairy products will undermine the cuts that technological and managerial innovation can achieve. Over the last few years food retailers in South Africa started to focus their attention towards GHG emissions, but there is still no framework for food retailers to reduce GHG emissions in South Africa (Tassou et al. 2007:2988). Various studies have argued that the food and drink, transportation, and construction industry sectors are regarded as the most significant contributors to GHG emissions (European Commission, 2006; SEI, WWF & CURE, 2006 and UNEP, 2008). Significant changes in food production and increases in food transport have resulted. The production of food on farms has become increasingly mechanised, large-scale, and specialised; and food supply chains have become more complicated and transport-intensive (Roelich, 2008). Food retailers are contributing to GHG emissions by means of electricity usage through refrigerator equipment, lighting, heating, air conditioning, baking and other secondary services. There is no general strategy for food retailers to reduce GHG emission and minimal research has been done in this sector (Tassou et al, 2011). Keywords: climate change; food retailers; greenhouse gas emission; perceptions; strategies


2021 ◽  
Author(s):  
Kevin Gurney ◽  
Siir Kilkis ◽  
Karen Seto ◽  
Shuaib Lwasa ◽  
Daniel Moran ◽  
...  

Projections of greenhouse gas (GHG) emissions are critical to better understanding and anticipating future climate change under different socio-economic conditions and mitigation strategies. The climate projections and scenarios assessed by the Intergovernmental Panel on Climate Change, following the Shared Socioeconomic Pathway (SSP)-Representative Concentration Pathway (RCP) framework, have provided a rich understanding of the constraints and opportunities for policy action. However, the current emissions scenarios lack an explicit treatment of urban emissions within the global context. Given the pace and scale of urbanization, with global urban populations expected to increase from about 4.4 billion today to about 7 billion by 2050, there is an urgent need to fill this knowledge gap. Here, we estimate the share of global GHG emissions emanating from urban areas from 1990 to 2100 based on the SSP-RCP framework. The urban GHG emissions are presented in five regional aggregates and are based on a combination of the urban population share, 2015 urban per capita CO2eq emissions, SSP-based national CO2eq emissions, and recent analysis of urban per capita CO2eq trends. We find that urban areas account for the majority of global GHG emissions in 2015 (61.8%). Moreover, the urban share of global GHG emissions progressively increases into the future, exceeding 80% in some scenarios by the end of the century. The combined urban areas in Asia and Developing Pacific, and Developed Countries account for 65.0% to 73.3% of cumulative urban emissions between 2020 and 2100 across the scenarios. Given these dominant roles, we describe the implications to potential urban mitigation in each of the scenario narratives in order to meet the goal of climate neutrality within this century.


2015 ◽  
Vol 73 (1) ◽  
pp. 137-143 ◽  
Author(s):  
H.-T. Liu ◽  
X.-J. Kong ◽  
G.-D. Zheng ◽  
C.-C. Chen

Sewage sludge is a considerable source of greenhouse gas (GHG) emission in the field of organic solid waste treatment and disposal. In this case study, total GHG emissions from sludge anaerobic digestion, including direct and indirect emissions as well as replaceable emission reduction due to biogas being reused instead of natural gas, were quantified respectively. The results indicated that no GHG generation needed to be considered during the anaerobic digestion process. Indirect emissions were mainly from electricity and fossil fuel consumption on-site and sludge transportation. Overall, the total GHG emission owing to relative subtraction from anaerobic digestion rather than landfill, and replaceable GHG reduction caused by reuse of its product of biogas, were quantified to be 0.7214 (northern China) or 0.7384 (southern China) MgCO2 MgWS−1 (wet sludge).


Sign in / Sign up

Export Citation Format

Share Document