scholarly journals Sepsis: When a Simple Infection Becomes Deadly

2021 ◽  
Vol 9 ◽  
Author(s):  
Andrew G. Farthing ◽  
Jessie Howell ◽  
J. Kenneth Baillie ◽  
Taya Forde ◽  
Alice Garrett ◽  
...  

The immune system plays a crucial role in maintaining a healthy body by working around the clock to recognize and respond to infection. Inflammation is part of the immune system’s protective response to an infection. The inflammatory response is incredibly powerful, so much so that it can damage the body’s cells if it is not tightly controlled. Sometimes, inflammation affects the whole body—this is called sepsis. The powerful and complex mechanisms in place to wipe out the infection can cause serious damage to healthy cells and tissues. Uncontrolled inflammation can cause irreversible damage to the body’s organs, such as the kidneys, eventually causing organs to shut down. If sepsis is not treated rapidly, it can lead to death. In this article, we describe the symptoms and diagnosis of sepsis and some of the current research being performed to better understand this dangerous process.

2019 ◽  
Vol 20 (8) ◽  
pp. 799-816 ◽  
Author(s):  
Yue Qiu ◽  
Guo-wei Tu ◽  
Min-jie Ju ◽  
Cheng Yang ◽  
Zhe Luo

Sepsis, which is a highly heterogeneous syndrome, can result in death as a consequence of a systemic inflammatory response syndrome. The activation and regulation of the immune system play a key role in the initiation, development and prognosis of sepsis. Due to the different periods of sepsis when the objects investigated were incorporated, clinical trials often exhibit negative or even contrary results. Thus, in this review we aim to sort out the current knowledge in how immune cells play a role during sepsis.


Author(s):  
Kazuo Tanishita ◽  
Kazuto Masamoto ◽  
Iwao Kanno ◽  
Hirosuke Kobayashi

Brain is a highly oxidative organ and its consumption rate of oxygen accounts for 20 percent of that of the whole body. This large consumption rate must be met by continuous supply of oxygen, because lack of oxygen rapidly causes irreversible damage to central nervous system. Acute hypoxic episodes cause a certain pattern of regional damage. Cerebral cortex (e.g., layers III, V, and VI) is one of the most susceptible regions to hypoxia, and damage to sensorimotor function is particularly severe in humans that survive hypoxic/ischemic episodes. However, little is known about whether oxygen transport in intracortical regions relates to such selective vulnerability to hypoxia.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Sunil Kumar ◽  
Madhuri T. Patil ◽  
Deepak B. Salunke

Abstract Cancer weakens the immune system which fails to fight against the rapidly growing cells. Among the various types of cancers, prostate cancer (PCa) is causing greater number of deaths in men after lung cancer, demanding advancement to prevent, detect and treat PCa. Several small molecule heterocycles and few peptides are being used as oncological drugs targeting PCa. Heterocycles are playing crucial role in the development of novel cancer chemotherapeutics as well as immunotherapeutics. Indole skeleton, being a privileged structure has been extensively used for the discovery of novel anticancer agents and the application of indole derivatives against breast cancer is well documented. The present article highlights the usefulness of indole linked heterocyclic compounds as well as the fused indole derivatives against prostate cancer.


Author(s):  
Charles Alessi ◽  
Larry W. Chambers ◽  
Muir Gray

This chapter starts by advising how to reduce the impact of stress. When stress becomes long term, the immune system becomes less sensitive to cortisol, and since inflammation is partly regulated by this hormone, this decreased sensitivity heightens the inflammatory response and allows inflammation to get out of control, increasing our risk of many diseases. You can reduce your stress yourself through a variety of methods, including physical activity and mindfulness-based stress reduction. Adequate sleep is also a major factor that can improve cognitive abilities and reduce the risk of dementia, and this chapter outlines what we need to know about sleep cycles, insomnia, and sleep disordered breathing, and how to sleep more and sleep better. The chapter then covers how to protect your brain from over medication (polypharmacy). It finishes by discussing how to maintain and indeed increase your levels of physical activity, and how increasing physical activity has both direct and indirect effects on the brain.


Author(s):  
Joshua A. Englert ◽  
Rebecca Marlene Baron

Sepsis is a clinical syndrome characterized by systemic inflammation leading to tissue injury that arises as a complication of an infection. According to current paradigms, sepsis arises as a result of the infection of a normally sterile body compartment. Infection leads to activation of the innate immune system to produce a systemic inflammatory response. This response is a necessary component of the body's defense against infection under normal conditions, but it is the lack of regulation of this response that is central to the pathogenesis of sepsis. As discussed in more detail below, this dysregulated inflammatory state can lead to tissue injury and dysfunction in organs not involved in the original infectious insult. Although sepsis remains a condition with exceedingly high morbidity and mortality, recent early management and treatment strategies have demonstrated exciting improvements in overall outcomes.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 955
Author(s):  
Farzana Yasmeen ◽  
Hana Seo ◽  
Nasir Javaid ◽  
Moon Suk Kim ◽  
Sangdun Choi

The immune system plays a crucial role in the body’s defense system against various pathogens, such as bacteria, viruses, and parasites, as well as recognizes non-self- and self-molecules. The innate immune system is composed of special receptors known as pattern recognition receptors, which play a crucial role in the identification of pathogen-associated molecular patterns from diverse microorganisms. Any disequilibrium in the activation of a particular pattern recognition receptor leads to various inflammatory, autoimmune, or immunodeficiency diseases. Aptamers are short single-stranded deoxyribonucleic acid or ribonucleic acid molecules, also termed “chemical antibodies,” which have tremendous specificity and affinity for their target molecules. Their features, such as stability, low immunogenicity, ease of manufacturing, and facile screening against a target, make them preferable as therapeutics. Immune-system–targeting aptamers have a great potential as a targeted therapeutic strategy against immune diseases. This review summarizes components of the innate immune system, aptamer production, pharmacokinetic characteristics of aptamers, and aptamers related to innate-immune-system diseases.


2015 ◽  
Vol 2 (4) ◽  
pp. 150108 ◽  
Author(s):  
Camila Vera-Massieu ◽  
Patrick M. Brock ◽  
Carlos Godínez-Reyes ◽  
Karina Acevedo-Whitehouse

Variations in immune function can arise owing to trade-offs, that is, the allocation of limited resources among costly competing physiological functions. Nevertheless, there is little information regarding the ontogeny of the immune system within an ecological context, and it is still unknown whether development affects the way in which resources are allocated to different immune effectors. We investigated changes in the inflammatory response during early development of the California sea lion ( Zalophus californianus ) and examined its association with body condition, as a proxy for the availability of energetic resources. We found that the relationship between inflammation and body condition varied according to developmental stage and circulating levels of leucocyte populations, a proxy for current infection. Body condition was related to the magnitude of the inflammatory response during two of the three developmental periods assessed, allowing for the possibility that the availability of pup energetic reserves can limit immune function. For older pups, the ability to mount an inflammatory response was related to their circulating levels of neutrophils and the neutrophil to lymphocyte ratio, implying that the infection status of an individual will influence its ability to respond to a new challenge. Our results suggest that trade-offs may occur within the immune system and highlight the importance of taking into account ontogeny in ecoimmunological studies.


2005 ◽  
Vol 13 (4) ◽  
pp. 382-395 ◽  
Author(s):  
Shahzad G Raja ◽  
Gilles D Dreyfus

Cardiac surgery and cardiopulmonary bypass initiate a systemic inflammatory response largely determined by blood contact with foreign surfaces and the activation of complement. It is generally accepted that cardiopulmonary bypass initiates a whole-body inflammatory reaction. The magnitude of this inflammatory reaction varies, but the persistence of any degree of inflammation may be considered potentially harmful to the cardiac patient. The development of strategies to control the inflammatory response following cardiac surgery is currently the focus of considerable research efforts. Diverse techniques including maintenance of hemodynamic stability, minimization of exposure to cardiopulmonary bypass circuitry, and pharmacologic and immunomodulatory agents have been examined in clinical studies. This article briefly reviews the current concepts of the systemic inflammatory response following cardiac surgery, and the various therapeutic strategies being used to modulate this response.


Sign in / Sign up

Export Citation Format

Share Document