scholarly journals 3D Printed Patient-Specific Complex Hip Arthroplasty Models Streamline the Preoperative Surgical Workflow: A Pilot Study

2021 ◽  
Vol 8 ◽  
Author(s):  
Michael Jiang ◽  
Jasamine Coles-Black ◽  
Gordon Chen ◽  
Matthew Alexander ◽  
Jason Chuen ◽  
...  

Introduction: Surgical planning for complex total hip arthroplasty (THA) often presents a challenge. Definitive plans can be difficult to decide upon, requiring unnecessary equipment to be ordered and a long theatre list booked. We present a pilot study utilising patient-specific 3D printed models as a method of streamlining the pre-operative planning process.Methods: Complex patients presenting for THA were referred to the research team. Patient-specific 3D models were created from routine Computed Tomography (CT) imaging. Simulated surgery was performed to guide prosthesis selection, sizing and the surgical plan.Results: Seven patients were referred for this pilot study, presenting with complex conditions with atypical anatomy. Surgical plans provided by the 3D models were more detailed and accurate when compared to 2D CT and X ray imaging. Streamlined equipment selection was of great benefit, with augments avoided post simulation in three cases. The ability to tackle complex surgical problems outside of the operating theatre also flagged potential complications, while also providing teaching opportunities in a low risk environment.Conclusion: This study demonstrated that 3D printed models can improve the surgical plan and streamline operative logistics. Further studies investigating the optimal 3D printing material and workflow, along with cost-benefit analyses are required before this process is ready for routine use.

2021 ◽  
Vol 10 (6) ◽  
pp. 1201
Author(s):  
Maciej Błaszczyk ◽  
Redwan Jabbar ◽  
Bartosz Szmyd ◽  
Maciej Radek

We developed a practical and cost-effective method of production of a 3D-printed model of the arterial Circle of Willis of patients treated because of an intracranial aneurysm. We present and explain the steps necessary to produce a 3D model from medical image data, and express the significant value such models have in patient-specific pre-operative planning as well as education. A Digital Imaging and Communications in Medicine (DICOM) viewer is used to create 3D visualization from a patient’s Computed Tomography Angiography (CTA) images. After generating the reconstruction, we manually remove the anatomical components that we wish to exclude from the print by utilizing tools provided with the imaging software. We then export this 3D reconstructions file into a Standard Triangulation Language (STL) file which is then run through a “Slicer” software to generate a G-code file for the printer. After the print is complete, the supports created during the printing process are removed manually. The 3D-printed models we created were of good accuracy and scale. The median production time used for the models described in this manuscript was 4.4 h (range: 3.9–4.5 h). Models were evaluated by neurosurgical teams at local hospital for quality and practicality for use in urgent and non-urgent care. We hope we have provided readers adequate insight into the equipment and software they would require to quickly produce their own accurate and cost-effective 3D models from CT angiography images. It has become quite clear to us that the cost-benefit ratio in the production of such a simplified model is worthwhile.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1021
Author(s):  
Bernhard Dorweiler ◽  
Pia Elisabeth Baqué ◽  
Rayan Chaban ◽  
Ahmed Ghazy ◽  
Oroa Salem

As comparative data on the precision of 3D-printed anatomical models are sparse, the aim of this study was to evaluate the accuracy of 3D-printed models of vascular anatomy generated by two commonly used printing technologies. Thirty-five 3D models of large (aortic, wall thickness of 2 mm, n = 30) and small (coronary, wall thickness of 1.25 mm, n = 5) vessels printed with fused deposition modeling (FDM) (rigid, n = 20) and PolyJet (flexible, n = 15) technology were subjected to high-resolution CT scans. From the resulting DICOM (Digital Imaging and Communications in Medicine) dataset, an STL file was generated and wall thickness as well as surface congruency were compared with the original STL file using dedicated 3D engineering software. The mean wall thickness for the large-scale aortic models was 2.11 µm (+5%), and 1.26 µm (+0.8%) for the coronary models, resulting in an overall mean wall thickness of +5% for all 35 3D models when compared to the original STL file. The mean surface deviation was found to be +120 µm for all models, with +100 µm for the aortic and +180 µm for the coronary 3D models, respectively. Both printing technologies were found to conform with the currently set standards of accuracy (<1 mm), demonstrating that accurate 3D models of large and small vessel anatomy can be generated by both FDM and PolyJet printing technology using rigid and flexible polymers.


2021 ◽  
Vol 7 ◽  
Author(s):  
Jasamine Coles-Black ◽  
Damien Bolton ◽  
Jason Chuen

Introduction: 3D printed patient-specific vascular phantoms provide superior anatomical insights for simulating complex endovascular procedures. Currently, lack of exposure to the technology poses a barrier for adoption. We offer an accessible, low-cost guide to producing vascular anatomical models using routine CT angiography, open source software packages and a variety of 3D printing technologies.Methods: Although applicable to all vascular territories, we illustrate our methodology using Abdominal Aortic Aneurysms (AAAs) due to the strong interest in this area. CT aortograms acquired as part of routine care were converted to representative patient-specific 3D models, and then printed using a variety of 3D printing technologies to assess their material suitability as aortic phantoms. Depending on the technology, phantoms cost $20–$1,000 and were produced in 12–48 h. This technique was used to generate hollow 3D printed thoracoabdominal aortas visible under fluoroscopy.Results: 3D printed AAA phantoms were a valuable addition to standard CT angiogram reconstructions in the simulation of complex cases, such as short or very angulated necks, or for positioning fenestrations in juxtarenal aneurysms. Hollow flexible models were particularly useful for device selection and in planning of fenestrated EVAR. In addition, these models have demonstrated utility other settings, such as patient education and engagement, and trainee and anatomical education. Further study is required to establish a material with optimal cost, haptic and fluoroscopic fidelity.Conclusion: We share our experiences and methodology for developing inexpensive 3D printed vascular phantoms which despite material limitations, successfully mimic the procedural challenges encountered during live endovascular surgery. As the technology continues to improve, 3D printed vascular phantoms have the potential to disrupt how endovascular procedures are planned and taught.


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Kay S. Hung ◽  
Michael J. Paulsen ◽  
Hanjay Wang ◽  
Camille Hironaka ◽  
Y. Joseph Woo

In recent years, advances in medical imaging and three-dimensional (3D) additive manufacturing techniques have increased the use of 3D-printed anatomical models for surgical planning, device design and testing, customization of prostheses, and medical education. Using 3D-printing technology, we generated patient-specific models of mitral valves from their pre-operative cardiac imaging data and utilized these custom models to educate patients about their anatomy, disease, and treatment. Clinical 3D transthoracic and transesophageal echocardiography images were acquired from patients referred for mitral valve repair surgery and segmented using 3D modeling software. Patient-specific mitral valves were 3D-printed using a flexible polymer material to mimic the precise geometry and tissue texture of the relevant anatomy. 3D models were presented to patients at their pre-operative clinic visit and patient education was performed using either the 3D model or the standard anatomic illustrations. Afterward, patients completed questionnaires assessing knowledge and satisfaction. Responses were calculated based on a 1–5 Likert scale and analyzed using a nonparametric Mann–Whitney test. Twelve patients were presented with a patient-specific 3D-printed mitral valve model in addition to standard education materials and twelve patients were presented with only standard educational materials. The mean survey scores were 64.2 (±1.7) and 60.1 (±5.9), respectively (p = 0.008). The use of patient-specific anatomical models positively impacts patient education and satisfaction, and is a feasible method to open new opportunities in precision medicine.


F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 1603
Author(s):  
Jagannadha Avasarala ◽  
Todd Pietila

Conventional magnetic resonance imaging (MRI) studies depict disease of the human brain in 2D but the reconstruction of a patient’s brain stricken with multiple sclerosis (MS) in 3D using 2D images has not been attempted.  Using 3D reconstruction algorithms, we built a 3D printed patient-specific brain model to scale. It is a first of its kind model that depicts the total white matter lesion (WML) load using T2 FLAIR images in an MS patient. The patient’s images in Digital Imaging and Communications in Medicine (DICOM) format were imported into Mimics inPrint 2.0 (Materialise NV, Leuven, Belgium) a dedicated medical image processing software designed for the purposes of image segmentation and 3D modeling.  The imported axial images were automatically formatted to display coronal and sagittal slices within the software. The imaging data were then segmented into regions and surface rendering was done to achieve 3D virtual printable files of the desired structures of interest. Rendering brain tumor(s) in 3D has been attempted with the specific intent of extending the options available to a surgeon but no study to our knowledge has attempted to quantify brain disease in MS that has, for all practical purposes, no surgical options. The purpose of our study was to demonstrate that 3D depiction of chronic neurological diseases is possible in a printable model while serving a fundamental need for patient education. Medical teaching is moored in 2D graphics and it is time to evolve into 3D models that can be life-like and deliver instant impact.


2018 ◽  
Vol 127 (5) ◽  
pp. 338-343 ◽  
Author(s):  
Max Haffner ◽  
Austin Quinn ◽  
Tsung-yen Hsieh ◽  
E. Bradley Strong ◽  
Toby Steele

Objective: Identify the 3D printed material that most accurately recreates the visual, tactile, and kinesthetic properties of human temporal bone Subjects and Methods: Fifteen study participants with an average of 3.6 years of postgraduate training and 56.5 temporal bone (TB) procedures participated. Each participant performed a mastoidectomy on human cadaveric TB and five 3D printed TBs of different materials. After drilling each unique material, participants completed surveys to assess each model’s appearance and physical likeness on a Likert scale from 0 to 10 (0 = poorly representative, 10 = completely life-like). The 3D models were acquired by computed tomography (CT) imaging and segmented using 3D Slicer software. Results: Polyethylene terephthalate (PETG) had the highest average survey response for haptic feedback (HF) and appearance, scoring 8.3 (SD = 1.7) and 7.6 (SD = 1.5), respectively. The remaining plastics scored as follows for HF and appearance: polylactic acid (PLA) averaged 7.4 and 7.6, acrylonitrile butadiene styrene (ABS) 7.1 and 7.2, polycarbonate (PC) 7.4 and 3.9, and nylon 5.6 and 6.7. Conclusion: A PETG 3D printed temporal bone models performed the best for realistic appearance and HF as compared with PLA, ABS, PC, and nylon. The PLA and ABS were reliable alternatives that also performed well with both measures.


10.29007/s8t6 ◽  
2019 ◽  
Author(s):  
Jürgen Wahrburg ◽  
Oliver Gieseler ◽  
Hubert Roth

The paper presents an approach for computer-assisted implantation of artificial hip joints. It is based on a novel solution combining pre-operative planning and intra- operative navigation in a way that the natural anatomy of the joint before surgery can be restored as close as possible, or with exactly planned modifications. A surgical workflow has been developed which highly focusses on the registration and restoration of patient specific parameters instead of using generalized criteria like the Lewinnek safe zone. The feasibility of the approach has successfully been demonstrated by a laboratory setup of Sawbone models.


2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 363-363
Author(s):  
E. Reilly Scott ◽  
Samuel Morano ◽  
Andrea Quinn ◽  
Erica Mann ◽  
Michelle Ho ◽  
...  

363 Background: 3D printing is a growing tool in surgical education due to the ability to visualize organs, tissue, and masses from multiple angles before operating on a patient. Previous studies using highly detailed and expensive 3D models costing between $1,000-250 per model have been shown to enhance patient and trainee comprehension of tumor characteristics, goals of surgery, and planned surgical procedure for partial nephrectomies. In our study we aim to use simpler and less expensive models in a greater range of patients receiving partial nephrectomies to determine the use of 3D models in patient, resident, and fellow education. Methods: 3D models of the effected kidney, mass, renal artery, and renal vein were created using preoperative imaging of undergoing partial nephrectomies at Thomas Jefferson University Hospital (TJUH) costing $35 per model. Residents and fellows filled out 3 surveys assessing their surgical plan and their confidence in the chosen plan at 3 time points: 1) Before seeing the model, 2) After seeing the model before surgery, and 3) After surgery. Ten patients filled out 2 surveys about their understanding of the kidney, their disease, the surgery they will undergo, and the risks involved with surgery before and after seeing the model. Results: Based on surveys to assess for surgical plan and confidence given to resident and fellow surgeons before and after seeing the 3D model, confidence significantly increased. Surveys given after surgery assessing anatomic and surgical comprehension found that resident and fellow surgeons rated the helpfulness of the models on their anatomical comprehension 7.6 out of 10 and the help of the models on their surgical confidence 7 out of 10. Patient understanding of their kidney, disease, and surgery significantly increased after seeing the 3D model, but the risks associated with surgery did not significantly increase. The extent that the model helped the patients learn about the kidney, their disease, the surgery, and the risks related to surgery were rated an average of 8.33, 9.67, 9.5, and 8.83 out of 10, respectively. Conclusions: Patient-specific 3D models for partial nephrectomies increase resident and fellow confidence in surgical approach and helped patients learn about their disease and feel comfortable going into surgery. Thus, it is important to continue to explore 3D models as an educational tool for both trainees and patients and potentially include 3D models as part of the standard of care. Further research could continue to explore the utility of 3D models as a pre-operative educational tool for both patients and trainees in other surgical fields.


2019 ◽  
Vol 97 (4) ◽  
pp. 277-286 ◽  
Author(s):  
Kaley H. Garner ◽  
Dinender K. Singla

Cardiovascular disease resulting from atypical cardiac structures continues to be a leading health concern despite advancements in diagnostic imaging and surgical techniques. However, the ability to visualize spatial relationships using current technologies remains a challenge. Therefore, 3D modeling has gained significant interest to understand complex and atypical cardiovascular disorders. Moreover, 3D modeling can be personalized and patient-specific. 3D models have been demonstrated to aid surgical planning and simulation, enhance communication among surgeons and patients, optimize medical device design, and can be used as a potential teaching tool in medical schools. In this review, we discuss the key components needed to generate cardiac 3D models. We highlight prevalent structural conditions that have utilized 3D modeling in pre-operative planning. Furthermore, we discuss the current limitations of routine use of 3D models in the clinic as well as future directions for utilization of this technology in the cardiovascular field.


Sign in / Sign up

Export Citation Format

Share Document