scholarly journals Isolation and Purification of Antimicrobial Peptides from the Blood of some Animals and the Study of its Antimicrobial Activity Against some Multidrug Resistant Pathogenic Bacteria

2017 ◽  
Vol 26 (2) ◽  
pp. 20-33
Author(s):  
Mohammed A. Mahmood ◽  
Muhsin A. Essa
Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 367
Author(s):  
Alexandre Lamas ◽  
Vicente Arteaga ◽  
Patricia Regal ◽  
Beatriz Vázquez ◽  
José Manuel Miranda ◽  
...  

Antimicrobial resistance is one of today’s major public health challenges. Infections caused by multidrug-resistant bacteria have been responsible for an increasing number of deaths in recent decades. These resistant bacteria are also a concern in the food chain, as bacteria can resist common biocides used in the food industry and reach consumers. As a consequence, the search for alternatives to common antimicrobials by the scientific community has intensified. Substances obtained from nature have shown great potential as new sources of antimicrobial activity. The aim of this study was to evaluate the antimicrobial activity of five bee venoms, also called apitoxins, against two common foodborne pathogens. A total of 50 strains of the Gram-negative pathogen Salmonella enterica and 8 strains of the Gram-positive pathogen Listeria monocytogenes were tested. The results show that the minimum inhibitory concentration (MIC) values were highly influenced by the bacterial genus. The MIC values ranged from 256 to 1024 µg/mL in S. enterica and from 16 to 32 µg/mL in L. monocytogenes. The results of this study demonstrate that apitoxin is a potential alternative agent against common foodborne pathogens, and it can be included in the development of new models to inhibit the growth of pathogenic bacteria in the food chain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhanyi Yang ◽  
Shiqi He ◽  
Hua Wu ◽  
Ting Yin ◽  
Lili Wang ◽  
...  

The security issue of human health is faced with dispiriting threats from multidrug-resistant bacteria infections induced by the abuse and misuse of antibiotics. Over decades, the antimicrobial peptides (AMPs) hold great promise as a viable alternative to treatment with antibiotics due to their peculiar antimicrobial mechanisms of action, broad-spectrum antimicrobial activity, lower drug residue, and ease of synthesis and modification. However, they universally express a series of disadvantages that hinder their potential application in the biomedical field (e.g., low bioavailability, poor protease resistance, and high cytotoxicity) and extremely waste the abundant resources of AMP database discovered over the decades. For all these reasons, the nanostructured antimicrobial peptides (Ns-AMPs), based on a variety of nanosystem modification, have made up for the deficiencies and pushed the development of novel AMP-based antimicrobial therapies. In this review, we provide an overview of the advantages of Ns-AMPs in improving therapeutic efficacy and biological stability, reducing side effects, and gaining the effect of organic targeting and drug controlled release. Then the different material categories of Ns-AMPs are described, including inorganic material nanosystems containing AMPs, organic material nanosystems containing AMPs, and self-assembled AMPs. Additionally, this review focuses on the Ns-AMPs for the effect of biological activities, with emphasis on antimicrobial activity, biosecurity, and biological stability. The “state-of-the-art” antimicrobial modes of Ns-AMPs, including controlled release of AMPs under a specific environment or intrinsic antimicrobial properties of Ns-AMPs, are also explicated. Finally, the perspectives and conclusions of the current research in this field are also summarized.


PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0144611 ◽  
Author(s):  
Anna Ebbensgaard ◽  
Hanne Mordhorst ◽  
Michael Toft Overgaard ◽  
Claus Gyrup Nielsen ◽  
Frank Møller Aarestrup ◽  
...  

2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Dayeong Kim ◽  
Nagasundarapandian Soundrarajan ◽  
Juyeon Lee ◽  
Hye-sun Cho ◽  
Minkyeung Choi ◽  
...  

ABSTRACT In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens.


2021 ◽  
Author(s):  
Jakob Frimodt-Møller ◽  
Christopher Campion ◽  
Peter E. Nielsen ◽  
Anders Løbner-Olesen

AbstractThe increase in multidrug-resistant pathogenic bacteria has become a problem worldwide. Currently there is a strong focus on the development of novel antimicrobials, including antimicrobial peptides (AMP) and antimicrobial antisense agents. While the majority of AMP have membrane activity and kill bacteria through membrane disruption, non-lytic AMP are non-membrane active, internalize and have intracellular targets. Antimicrobial antisense agents such as peptide nucleic acids (PNA) and phosphorodiamidate morpholino oligomers (PMO), show great promise as novel antibacterial agents, killing bacteria by inhibiting translation of essential target gene transcripts. However, naked PNA and PMO are unable to translocate across the cell envelope of bacteria, to reach their target in the cytosol, and are conjugated to bacteria penetrating peptides (BPP) for cytosolic delivery. Here, we discuss how non-lytic AMP and BPP-PMO/PNA conjugates translocate across the cytoplasmic membrane via receptor-mediated transport, such as the cytoplasmic membrane transporters SbmA, MdtM/YjiL, and/or YgdD, or via a less well described autonomous process.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 952
Author(s):  
Lorenza Fagnani ◽  
Lisaurora Nazzicone ◽  
Fabrizia Brisdelli ◽  
Luisa Giansanti ◽  
Sara Battista ◽  
...  

The dramatic intensification of antimicrobial resistance occurrence in pathogenic bacteria concerns the global community. The revitalisation of inactive antibiotics is, at present, the only way to go through this health system crisis and the use of antimicrobial adjuvants is turning out the most promising approach. Due to their low toxicity, eco-friendly characteristics and antimicrobial activity, amphoteric surfactants are good candidates. This study investigated the adjuvant potentialities of commercial acyclic and newly cyclic N-oxide surfactants combined with therapeutically available antibiotics against MDR methicillin-resistant Staphylococcus aureus (MRSA). The safety profile of the new cyclic compounds, compared to commercial surfactants, was preliminarily assessed, evaluating the cytotoxicity on human peripheral mononuclear blood cells and the haemolysis in human red blood cells. The compounds show an efficacious antimicrobial activity strongly related to the length of the carbon atom chain. In drug–drug interaction assays, all surfactants act synergistically, restoring sensitivity to oxacillin in MRSA, with dodecyl acyclic and cyclic derivatives being the most effective. After evaluating the cytotoxicity and considering the antimicrobial action, the most promising compound is the L-prolinol amine-oxide C12NOX. These findings suggest that the combination of antibiotics with amphoteric surfactants is a valuable therapeutic option for topical infections sustained by multidrug-resistant S. aureus.


2013 ◽  
Vol 8 (12) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Cristina Moiteiro ◽  
Teresa Esteves ◽  
Luís Ramalho ◽  
Rosario Rojas ◽  
Sandra Alvarez ◽  
...  

Essential oils from foliage, bark and heartwood of Cryptomeria japonica D. Don from Azores Archipelago (Portugal) were analyzed by GC and GC-MS. Two populations, of black and reddish heartwood color, were studied. The main compounds found in the foliage of both populations were α-pinene (9.6–29.5%), (+)-phyllocladene (3.5–26.5%), ent-kaur-16-ene (0.2–20.6%), sabinene (0.5–19.9%) and limonene (1.4–11.5%), with a large variation in individual compounds from each population. Heartwood oils were characterized by a high content of cubebol (2.8–39.9%) and epi-cubebol (4.1–26.9%) isomers, which were absent in the foliage. Elemol and eudesmol isomers were found in the foliage and heartwood oils, while (+)-phyllocladene was absent in heartwood. Black and reddish bark oils were composed of the diterpenes dehydroferruginol (1.9–5.1%) and ferruginol (2.6–11.5%), along with the sesquiterpenes δ-cadinene (10.4–15.9%), α-muurolene (3.3–5.4%), epi-zonarene (4.0–5.0%), cubenol (9.3–14.0%), τ-muurolol (4.8–10.7%), β-eudesmol (3.0–9.9%), γ-eudesmol (1.9–7.0%) and hedycariol (1.4–6.2%). Azorean C. japonica oils exhibited significant chemical differences compared with native plants from Asia. The essential oils showed moderate antimicrobial activity against the pathogenic fungus Cryptococcus neoformans and human pathogenic bacteria (especially against multidrug-resistant Mycobacterium tuberculosis). The antimicrobial activity of the essential oils may be attributed to compounds such as ent-kaur-16-ene, (+)-phyllocladene, ferruginol and elemol, which are present in different proportions within the complex oil mixture. These results suggest a potential use for C. japonica oils obtained from wood industry leftovers.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 2623-2630
Author(s):  
Agneswari S ◽  
Gopukumar S T

The occurrence of multidrug resistant by pathogens is a universal issue for providing tolerable treatment for various infectious diseases. The predictable anti-microbial proxies are relatively active against plentiful strains, still need of more drugs against multidrug resistant pathogens. Herbal drugs have potential against antimicrobial activity from ancient days and their treatment of pathogenic diseases is increasing for developing plant based natural products. Essential oils have combat against antibiotic resistant bacteria. Thus our study was focused on plant based essential oil against human pathogenic bacteria. The necessary oil extracted from Curcuma longa and C. martini revealed protuberant anti-microbial accomplishments against B. subtilis, Escherichia coli, P. aeruginosa and S. aureus.  Low concentration of C. longa oil at 10 µl inhibited the growth of all strains Bacillus subtilis followed by E. coli and S. aureus.  Maximum bustle was noted in P. aerogenosa at 40 µl in both C. longa and C. martini oils. Human pathogenic  strain treated with C. martini  oil showed maximum inhibition in P. aerogenosa  followed by B. subtilis, E. coli and S. aureus.  Synergistic activity of oils against the strains showed maximum inhibition at 40 µl in P. aerogenosa. 


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Hye-Ra Lee ◽  
Deok-gyun You ◽  
Hong Kyu Kim ◽  
Jang Wook Sohn ◽  
Min Ja Kim ◽  
...  

ABSTRACT To overcome increasing bacterial resistance to conventional antibiotics, many antimicrobial peptides (AMPs) derived from host defense proteins have been developed. However, there are considerable obstacles to their application to systemic infections because of their low bioavailability. In the present study, we developed an AMP derived from Romo1 (AMPR-11) that exhibits a broad spectrum of antimicrobial activity. AMPR-11 showed remarkable efficacy against sepsis-causing bacteria, including multidrug-resistant strains, with low toxicity in a murine model of sepsis after intravenous administration. It seems that AMPR-11 disrupts bacterial membranes by interacting with cardiolipin and lipid A. From the results of this study, we suggest that AMPR-11 is a new class of agent for overcoming low efficacy in the intravenous application of AMPs and is a promising candidate to overcome multidrug resistance. IMPORTANCE Abuse of antibiotics often leads to increase of multidrug-resistant (MDR) bacteria, which threatens the life of human beings. To overcome threat of antibiotic resistance, scientists are developing a novel class of antibiotics, antimicrobial peptides, that can eradicate MDR bacteria. Unfortunately, these antibiotics have mainly been developed to cure bacterial skin infections rather than others, such as life-threatening sepsis. Major pharmaceutical companies have tried to develop antiseptic drugs; however, they have not been successful. Here, we report that AMPR-11, the antimicrobial peptide (AMP) derived from mitochondrial nonselective channel Romo1, has antimicrobial activity against Gram-positive and Gram-negative bacteria comprising many clinically isolated MDR strains. Moreover, AMPR-11 increased the survival rate in a murine model of sepsis caused by MDR bacteria. We propose that AMPR-11 could be a novel antiseptic drug candidate with a broad antimicrobial spectrum to overcome MDR bacterial infection.


2019 ◽  
Author(s):  
Serge Ruden ◽  
Annika Rieder ◽  
Thomas Schwartz ◽  
Ralf Mikut ◽  
Kai Hilpert

AbstractWith the rise of various multi-drug resistance pathogenic bacteria, worldwide health care is under pressure to respond. Conventional antibiotics are failing and the development of novel classes or alternative strategies is a major priority. Antimicrobial peptides (AMPs) can not only kill multi-drug resistant bacteria, but also can be used synergistically with conventional antibiotics. We selected 30 short AMPs from different origins and measured their synergy in combination with Polymyxin B, Piperacillin, Ceftazidime, Cefepime, Meropenem, Imipenem, Tetracycline, Erythromycin, Kanamycin, Tobramycin, Amikacin, Gentamycin, and Ciprofloxacin. In total 403 unique combinations were tested against a multi-drug resistant Pseudomonas aeruginosa isolate (PA910). As a measure of the synergistic effects, fractional inhibitory concentrations (FICs) were determined using microdilution assays with FICs ranges between 0.25 and 2. A high number of combinations between peptides and Polymyxin B, Erythromycin and Tetracycline were found to be synergistic. Novel variants of Indolicidin also showed a high frequency in synergist interaction.


Sign in / Sign up

Export Citation Format

Share Document