scholarly journals Simulating the Long-Term Effects of Fertilizer and Water Management on Grain Yield and Methane Emissions of Paddy Rice in Thailand

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1144
Author(s):  
Nittaya Cha-un ◽  
Amnat Chidthaisong ◽  
Kazuyuki Yagi ◽  
Sirintornthep Towprayoon

Rice is an important economic crop in Thailand. However, paddy rice fields are one of the largest anthropogenic sources of methane (CH4) emissions. Therefore, suitable crop management practice is necessary to reduce CH4 emissions while rice grain yield is maintained. This study aimed to evaluate appropriate options of fertilizer and water management practices for Thai rice cultivation with regards to improving rice grain yield and reducing CH4 emissions. The Denitrification–Decomposition (DNDC) model was used to simulate grain yield and the emission of CH4 under the three fertilizer options (chemical fertilizer (F), manure (M) and chemical fertilizer + manure (F + M)) with three water management options (continuous flooding (CF), mid-season drainage (MD) and alternate wet and dry (AWD)) during the years 2011–2050. Rain-fed and irrigated rice cropping systems were used. A total of 24 sites distributed in 22 provinces were studied. The data sets of daily climate, soil properties, and rice management practices were required as inputs in the model. Model validation with observation data in a field experiment indicated that simulated grain yields (R2 = 0.83, slope = 0.98, NRMES = 0.30) and cumulative seasonal CH4 emissions (R2 = 0.83, slope = 0.74, NRMES = 0.43) were significantly and positively correlated with the observation. At the end of the simulation period (2046–2050), fertilizer management options of F and F + M gave more grain yield than the M management option by 1–44% in rain-fed rice cropping and 104–190% in irrigated rice cropping system, respectively. Among options, the lower CH4 emissions were found in AWD water management options. The appropriate options with regard to maintaining grain yield and reducing CH4 emissions in the long term were suggested to be F + M with AWD for the rain-fed rice, and F with AWD for the irrigated rice cropping systems.

1977 ◽  
Vol 13 (4) ◽  
pp. 305-315 ◽  
Author(s):  
J. J. Walcott ◽  
M. Chauviroj ◽  
A. Chinchest ◽  
P. Choticheuy ◽  
R. Ferraris ◽  
...  

SUMMARYThe productivity of seven multiple rice-cropping systems, utilizing a short-duration cultivar under irrigation, were assessed over 5 years. Systems of one, two and three crops a year were compared. Multiple cropping reduced grain yield, panicles m-2, total dry matter and nitrogen uptake per crop. However, the unfertilized three-crop-per-year system averaged 9·1 t grain, 17·1 t DM and 126 kg N ha-1 per annum, without showing a long term decline in productivity. Recovery and utilization of nitrogen fertilizer were generally low compared to other experiments, and were highest for the early dry season cropping period.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2816
Author(s):  
Israt Jahan ◽  
Mohammad Anwarul Abedin ◽  
Mohammad Rafiqul Islam ◽  
Mahmud Hossain ◽  
Tahsina Sharmin Hoque ◽  
...  

Globally, the risk of arsenic (As) contamination in soil and rice is well documented across the globe. In Bangladesh, drinking water and rice are two major exposure pathways of As to humans. Therefore, the efficiency of recent technologies to reduce rice As and associated human health risks still need to be deeply investigated. In this direction, a pot experiment was performed to investigate the impact of soil As and agronomic irrigation management on rice (cv. BRRI dhan28) growth, yield, As accumulation, and finally, health risks to humans from consuming rice. Treatment combinations were made with three levels of As (0, 20, and 40 mg kg−1) having two irrigation procedures, including alternate wetting and drying (AWD) and traditional continuous flooding (CF). According to the findings, As pollution in the soil lowered the yield contributing features and rice yield, including panicle length, filled grains per panicle, sterile grains per panicle, 1000-grain weight, grain yield, and straw yield. AWD water management significantly improved the growth performance and productivity of rice. Grain yield was increased by 13% in AWD compared to CF. Rice grain and straw As concentrations were increased to 0.56 mg kg−1 and 15.10 mg kg−1, respectively, in soil with 40 mg kg−1 As and CF water management. AWD treatment significantly reduced grain and straw As contents by 16% and 28%, respectively. Increased grain, straw, and total As uptake was noticed with higher soil As concentrations. The study also found that rising soil As raised non-carcinogenic risks (HQ > 1) and carcinogenic risks (CR > 1.010–4) while AWD lowered health risks compared to CF. Thus, rice farming using AWD irrigation could be a viable and long-term solution for reducing As contamination in rice and associated human health hazards.


2020 ◽  
Vol 66 (No. 1) ◽  
pp. 22-32
Author(s):  
Qingyin Shang ◽  
Xiuxia Yang ◽  
Hui Yan ◽  
Xiaohui Wang

Soil fertility is fundamental in determining crop productivity and sustainability in farming systems. A long-term fertiliser experiment in Chinese double rice-cropping systems initiated in 2011 was used in this study to gain an insight into a complete estimating of soil fertility. The six fertiliser treatments included mineral fertiliser (NP, NK, and NPK), combined NPK with farmyard manure (NPKM) or crop straw (NPKS), and no fertiliser application as a control. Results showed that grain yield averaged 5.5–13.0 t/ha/year, and significant increasing trends were observed in the phosphorus-applied plots (NP, NPK, NPKM, and NPKS), but the treatments without phosphorus applied (control and NK) resulted in declining trends in both early- and late-rice yields. After long-term rice cultivation, the contents of total and available phosphorus significantly declined in phosphorus-deficient plots compared to other treatments. Regression analysis showed that the improvement in grain yields was positively correlated with the increased soil fertility over treatments. Relative to the NPK treatment, the NPKM treatment greatly enhanced soil fertility from 0.50 to 0.78, and particularly dramatically increased the content of available soil phosphorus. Therefore, the high grain yield and soil fertility can be simultaneously achieved by long-term balanced fertiliser applications in Chinese double rice-cropping systems.  


2017 ◽  
Vol 47 (3) ◽  
pp. 185-194 ◽  
Author(s):  
Adriano Stephan NASCENTE ◽  
Ruby KROMOCARDI

ABSTRACT The upland rice farmers in Suriname use local varieties and low level technologies in the field. As a result, the upland rice grain yield is low, at about 1 000 kg ha-1. Our objective was to evaluate the use of upland rice cultivars from Suriname and Brazil, and the effect of nitrogen, N, phosphorus, P, and potassium, K, fertilizers on cultivation variables. We undertook four field trials in the Victoria Area, in the Brokopondo District, using a randomized block design each with four replications. The most productive rice varieties were BRS Esmeralda (grain yield 2 903 kg ha-1) and BRS Sertaneja (2 802 kg ha-1). The highest grain yield of 2 620 kg ha-1 was achieved with a top dressing application of 76.41 kg N ha-1 20 days after sowing. For P, the highest grain yield of 3 085 kg ha-1 was achieved with application of 98.06 kg ha-1 P2O5 applied at sowing. An application rate of 31.45 kg ha-1 of K2O at sowing achieved the highest grain yield of 2 952 kg ha-1. Together, these application rates of N, P and K resulted in rice grain yield of about 3 000 kg ha-1, which is three times greater than the national average for upland rice. We demonstrate that the use of improved rice varieties matched to the local conditions, and application of appropriate fertilizers, are management practices that can result in significant increases in rice grain yield in Suriname.


2016 ◽  
Vol 566-567 ◽  
pp. 641-651 ◽  
Author(s):  
Kazunori Minamikawa ◽  
Tamon Fumoto ◽  
Toshichika Iizumi ◽  
Nittaya Cha-un ◽  
Uday Pimple ◽  
...  

2016 ◽  
Vol 163 ◽  
pp. 319-331 ◽  
Author(s):  
Kaiming Liang ◽  
Xuhua Zhong ◽  
Nongrong Huang ◽  
Rubenito M. Lampayan ◽  
Junfeng Pan ◽  
...  

2009 ◽  
Vol 147 (3) ◽  
pp. 303-312 ◽  
Author(s):  
Q. JING ◽  
H. VAN KEULEN ◽  
H. HENGSDIJK ◽  
W. CAO ◽  
P. S. BINDRABAN ◽  
...  

SUMMARYAbout 0·10 of the food supply in China is produced in rice–wheat (RW) cropping systems. In recent decades, nitrogen (N) input associated with intensification has increased much more rapidly than N use in these systems. The resulting nitrogen surplus increases the risk of environmental pollution as well as production costs. Limited information on N dynamics in RW systems in relation to water management hampers development of management practices leading to more efficient use of nitrogen and water. The present work studied the effects of N and water management on yields of rice and wheat, and nitrogen use efficiencies (NUEs) in RW systems. A RW field experiment with nitrogen rates from 0 to 300 kg N/ha with continuously flooded and intermittently irrigated rice crops was carried out at the Jiangpu experimental station of Nanjing Agricultural University of China from 2002 to 2004 to identify improved nitrogen management practices in terms of land productivity and NUE.Nitrogen uptake by rice and wheat increased with increasing N rates, while agronomic NUE (kg grain/kg N applied) declined at rates exceeding 150 kg N/ha. The highest combined grain yields of rice and wheat were obtained at 150 and 300 kg N/ha per season in rice and wheat, respectively. Carry-over of residual N from rice to the subsequent wheat crop was limited, consistent with low soil nitrate after rice harvest. Total soil N hardly changed during the experiment, while soil nitrate was much lower after wheat than after rice harvest. Water management did not affect yield and N uptake by rice, but apparent N recovery was higher under intermittent irrigation (II). In one season, II management in rice resulted in higher yield and N uptake in the subsequent wheat season. Uptake of indigenous soil N was much higher in rice than in wheat, while in rice it was much higher than values reported in the literature, which may have consequences for nitrogen fertilizer recommendations based on indigenous N supply.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 780
Author(s):  
Muhammad Qaswar ◽  
Jing Huang ◽  
Waqas Ahmed ◽  
Dongchu Li ◽  
Shujun Liu ◽  
...  

Cultivation of green manure (GM) crops in intensive cropping systems is important for enhancing crop productivity through soil quality improvement. We investigated yield sustainability, nutrient stocks, nutrient balances and enzyme activities affected by different long-term (1982–2016) green manure rotations in acidic paddy soil in a double-rice cropping system. We selected four treatments from a long-term experiment, including (1) rice-rice-winter fallow as a control treatment (R-R-F), (2) rice-rice-milkvetch (R-R-M), (3) rice-rice-rapeseed (R-R-R), and (4) rice-rice-ryegrass (R-R-G). The results showed that different GM rotations increased grain yield and the sustainable yield index compared with those of the R-R-F treatment. Compared with those of R-R-F, the average grain yield of early rice in R-R-M, R-R-R, and R-R-G increased by 45%, 29%, and 27%, respectively and that of late rice increased by 46%, 28%, and 26%, respectively. Over the years, grain yield increased in all treatments except R-R-F. Green manure also improved the soil chemical properties (SOM and total and available N and P), except soil pH, compared to those of the control treatment. During the 1983–1990 cultivation period, the soil pH of the R-R-M treatment was lower than that of the R-R-F treatment. The addition of green manure did not mitigate the soil acidification caused by the use of inorganic fertilizers. The soil organic matter (SOM), total nitrogen (TN) and total phosphorus (TP) contents and stocks of C, N and P increased over the years. Furthermore, GM significantly increased phosphatase and urease activities and decreased the apparent N and P balances compared with those in the winter fallow treatment. Variance partitioning analysis revealed that soil properties, cropping systems, and climatic factors significantly influenced annual grain yield. Aggregated boosted tree (ABT) analysis quantified the relative influences of the different soil properties on annual grain yield and showed that the relative influences of TN content, SOM, pH, and TP content on annual crop yield were 27.8%, 25.7%, 22.9%, and 20.7%, respectively. In conclusion, GM rotation is beneficial for sustaining high crop yields by improving soil biochemical properties and reducing N and P balances in acidic soil under double- rice cropping systems.


Sign in / Sign up

Export Citation Format

Share Document