Substrate-Dependent Effect of Vermicompost on Yield and Physiological Indices of Container-Grown Dracocephalum moldavica Plants

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1231
Author(s):  
Alise Ose ◽  
Una Andersone-Ozola ◽  
Gederts Ievinsh

The development of sustainable plant production systems involves a search for different alternatives to chemical fertilizers. The aim of the present study is to compare growth and physiological effects of vermicompost on Dracocephalum moldavica plants in controlled conditions, using two types of commercially available substrates. The intention is to determine whether nondestructively measured photosynthesis-related parameters are useful for monitoring the physiological status of plants. The plants were cultivated in two base substrates without or with the addition of mineral fertilizer, as well as an amendment with vermicompost at a 20% or 30% rate in the conditions of an automated greenhouse. The biomass accumulation for control plants of D. moldavica was identical in peat substrate and commercial garden soil. The average growth increase by mineral fertilizer was 25% for D. moldavica plants grown in peat and 15% for plants grown in soil. Substrate amendment with 20% vermicompost resulted in an 114% average increase in biomass for plants grown in peat and a 98% average increase for plants grown in soil, but for plants at 30% the amendment rate increase was 148% and 68%, for peat and soil, respectively. Consequently, the addition of an identical amount of vermicompost resulted in a poorer growth response of plants in commercial garden soil as a substrate in comparison to peat, but an increase in the amendment rate from 20% to 30% resulted in some growth inhibition for these plants. Chlorophyll concentration was positively affected by the vermicompost amendment in a concentration-dependent manner, but this effect during a cultivation period appeared relatively late. Large differences were found between the three groups of fluorescence-derived parameters, with variable levels of predictability with respect to the differences in plant yield due to the pronounced variation in correlation through time. It is concluded that the incorporation of vermicompost for the cultivation of D. moldavica, even in substrate mixes with relatively high and balanced composition of plant-available nutrients, benefits plant growth, physiological status and biomass yield, but it is necessary to explore interactions between vermicompost and other substrates leading to possible changes in quality-related characteristics of vermicompost in substrate mixes.

2019 ◽  
Vol 32 (4) ◽  
pp. 1005-1014
Author(s):  
FRANCISCO SILDEMBERNY SOUZA DOS SANTOS ◽  
THALES VINICIUS DE ARAÚJO VIANA ◽  
SOLERNE CAMINHA COSTA ◽  
GEOCLEBER GOMES DE SOUSA ◽  
BENITO MOREIRA DE AZEVEDO

ABSTRACT In a scenario of water scarcity in semiarid regions, it is imperative to design food production systems that use different sources of water. The waste of desaltersis a potential source, especially when combined with the hydroponics technique that includes the supply of nutrient solution as a source of water and nutrients. In addition, other techniques such as enhanced organic matter with biofertilizer can complement this low-quality water use strategy. Thus, the aim of this study was to analyze the possible dampening effect of biofertilizers in the open system of hydroponic culture of pepper owing to the increase in water salinity. The study was conducted at the Teaching Unit, Research and Extension, Federal Institute of Education, Science and Technology of Ceará, Limoeiro do Norte Campus. The experimental design was a factorial 5 × 4 randomized block for five saline water concentration sand three doses of biofertilizers and one control with mineral fertilizer, and four replicates totaling 80 experimental units with 3 plants per plot. The variables analyzed were number of fruits per plant, production, and length and width of the fruit. All production variables declined linearly with increasing salinity. In addition, the biofertilizer did not attenuate the deleterious effects of salinity as shown by the productivity data. The fertilization with mineral fertilizers produced greater yields, followed by application of 50%, 100%, and 150% of the biofertilizer dose.


2021 ◽  
Author(s):  
Elena Valkama ◽  
Marco Acutis

<p>Reviews and meta-analyses generally support the perception that organic farming systems are more environmentally friendly than conventional farming systems. Organic agriculture results in more soil organic matter and higher microbiological activity, thus, providing better water holding capabilities, decreased both runoff and concentration of nitrate in soil, leading to fewer risks of nitrate leaching loss from the soil to water bodies. However, environmental quality parameters can differ between organic plant and animal production farms, moreover, they can be higher calculated per unit product.</p><p>We used the ARMOSA process-based crop model (Valkama et al., 2020) to evaluate contribution of plant and animal organic farming to soil organic carbon (SOC) sequestration and N leaching loss reduction compare to conventional systems in South Savo (Finland). Since organic systems often produce about 30% less yields compared to conventional systems, we calculated SOC changes per total gross energy in harvested yields. For model inputs we used daily meteorological data, statistical annual crop yields, statistical data for sales of nitrogen fertilizers in the region during the last 20 years (1999-2018). Five-year crop rotations were simulated on loamy sand soil (C 3.5 %, C/N ratio 17, pH 6.2). On plant production farms, rotations consisted of cereals (with addition of pea in organic), oilseed rape and grass. Conventional crops were fertilized with mineral fertilizer, and residues were removed (PC-R) or retained (PC+R). Organic crops were fertilized with green manure only (PO<sub>g</sub>+R) or also with commercial organic fertilizer (PO<sub>f</sub>+R). On animal production farms, conventional (AC-R) and organic (AO-R) rotations consisted of 2 years of cereals and 3 years of grass, sown with clover in organic system. Conventional animal system was fertilized with mineral fertilizer and slurry, while organic system with slurry only, and residues were removed in both systems.</p><p>Simulations showed that both conventional plant production systems (PC-R and PC+R) led to SOC decline of 650 kg ha<sup>-1</sup>yr<sup>-1</sup> at 0-30 cm soil depth. Organic systems showed either less SOC decline (120 kg ha<sup>-1</sup>yr<sup>-1</sup>) as in PO<sub>g</sub>+R, or slight SOC increase (55 kg ha<sup>-1</sup>yr<sup>-1</sup>) as in PO<sub>f</sub>+R. In contrast, organic animal production system did not differ from conventional system in terms of SOC change, showing a slight decreasing trend of about 150 kg ha<sup>-1</sup>yr<sup>-1</sup>. Estimates of SOC per gross energy in harvested yields showed the highest value (1.3 kg GJ<sup>-1</sup>) for organic plant production fertilized with commercial organic fertilizer (PO<sub>f</sub>+R), while the lowest value (-18 and -13 kg GJ<sup>-1</sup>) for conventional plant production systems (PC-R and PC+R, respectively). In contrast, the estimates did not differ much between organic (-2.2 kg GJ<sup>-1</sup>) and conventional (-1.8 kg GJ<sup>-1</sup>) animal production systems. Simulated N leaching loss varied between 6 and 9 kg ha<sup>-1</sup> yr<sup>-1</sup> for all systems, except for organic plant rotation with green manure (PO<sub>g</sub>+R), which N leaching loss was only 3 kg ha<sup>-1</sup> yr<sup>-1</sup>. </p><p>The modelling results suggest that organic plant production farms can be more environmentally friendly per unit area as well as per unit product compared to conventional farms, while organic animal production farms seem to cause similar environmental impact as conventional farms.</p>


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


1992 ◽  
Vol 68 (05) ◽  
pp. 570-576 ◽  
Author(s):  
Mary A Selak

SummaryWe have previously demonstrated that human neutrophil cathepsin G is a strong platelet agonist that binds to a specific receptor. This work describes the effect of neutrophil elastase on cathepsin G-induced platelet responses. While platelets were not activated by high concentrations of neutrophil elastase by itself, elastase enhanced aggregation, secretion and calcium mobilization induced by low concentrations of cathepsin G. Platelet aggregation and secretion were potentiated in a concentration-dependent manner by neutrophil elastase with maximal responses observable at 200 nM. Enhancement was observed when elastase was preincubated with platelets for time intervals of 10–60 s prior to addition of a low concentration of cathepsin G and required catalytically-active elastase since phenylmethanesulphonyl fluoride-inhibited enzyme failed to potentiate cell activation. Neutrophil elastase potentiation of platelet responses induced by low concentrations of cathepsin G was markedly inhibited by creatine phosphate/creatine phosphokinase and/or indomethacin, indicating that the synergism between elastase and cathepsin G required the participation of ADP and thromboxane A2. On the other hand, platelet responses were not attenuated by the PAF antagonist BN 52021, signifying that PAF-acether did not play a role in elastase potentiation. At higher concentrations porcine pancreatic elastase exhibits similar effects to neutrophil elastase, demonstrating that the effect of elastase was not unique to the neutrophil protease. While neutrophil elastase failed to alter the ability of cathepsin G to hydrolyze a synthetic chromogenic substrate, preincubation of platelets with elastase increased the apparent affinity of cathepsin G binding to platelets. In contrast to their effect on cathepsin G-induced platelet responses, neither neutrophil nor pancreatic elasatse potentiated aggregation or dense granule release initiated by ADP, PAF-acether, arachidonic acid or U46619, a thromboxane A2 mimetic. Moreover, unlike its effect on cathepsin G, neutrophil elastase inhibited thrombin-induced responses. The current observations demonstrate that elastase can potentiate platelet responses mediated by low concentrations of cathepsin G, suggesting that both enzymes may function synergistically to activate platelets under conditions where neutrophil degranulation occurs.


1993 ◽  
Vol 69 (03) ◽  
pp. 286-292 ◽  
Author(s):  
Che-Ming Teng ◽  
Feng-Nien Ko ◽  
Inn-Ho Tsai ◽  
Man-Ling Hung ◽  
Tur-Fu Huang

SummaryTrimucytin is a potent platelet aggregation inducer isolated from Trimeresurus mucrosquamatus snake venom. Similar to collagen, trimucytin has a run of (Gly-Pro-X) repeats at the N-terminal amino acids sequence. It induced platelet aggregation, ATP release and thromboxane formation in rabbit platelets in a concentration-dependent manner. The aggregation was not due to released ADP since it was not suppressed by creatine phosphate/creatine phosphokinase. It was not either due to thromboxane A2 formation because indomethacin and BW755C did not have any effect on the aggregation even thromboxane B2 formation was completely abolished by indomethacin. Platelet-activating factor (PAF) was not involved in the aggregation since a PAF antagonist, kadsurenone, did not affect. However, RGD-containing peptide triflavin inhibited the aggregation, but not the release of ATP, of platelets induced by trimucytin. Indomethacin, mepacrine, prostaglandin E1 and tetracaine inhibited the thromboxane B2 formation of platelets caused by collagen and trimucytin. Forskolin and sodium nitroprusside inhibited both platelet aggregation and ATP release, but not the shape change induced by trimucytin. In quin-2 loaded platelets, the rise of intracellular calcium concentration caused by trimucytin was decreased by 12-O-tetradecanoyl phorbol-13 acetate, imipramine, TMB-8 and indomethacin. In the absence of extracellular calcium, both collagen and trimucytin caused no thromboxane B2 formation, but still induced ATP release which was completely blocked by R 59022. Inositol phosphate formation in platelets was markedly enhanced by trimucytin and collagen. MAB1988, an antibody against platelet membrane glycoprotein Ia, inhibited trimucytinand collagen-induced platelet aggregation and ATP release. However, trimucytin did not replace the binding of 125I-labeled MAB1988 to platelets. Platelets pre-exposed to trimucytin were resistant to the second challenge with trimucytin itself or collagen. It is concluded that trimucytin may activate collagen receptors on platelet membrane, and cause aggregation and release mainly through phospholipase C-phosphoinositide pathway.


2018 ◽  
Author(s):  
Luke Jordan ◽  
Nathan Wittenberg

This is a comprehensive study of the effects of the four major brain gangliosides (GM1, GD1b, GD1a, and GT1b) on the adsorption and rupture of phospholipid vesicles on SiO2 surfaces for the formation of supported lipid bilayer (SLB) membranes. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we show that gangliosides GD1a and GT1b significantly slow the SLB formation process, whereas GM1 and GD1b have smaller effects. This is likely due to the net ganglioside charge as well as the positions of acidic sugar groups on ganglioside glycan head groups. Data is included that shows calcium can accelerate the formation of ganglioside-rich SLBs. Using fluorescence recovery after photobleaching (FRAP) we also show that the presence of gangliosides significantly reduces lipid diffusion coefficients in SLBs in a concentration-dependent manner. Finally, using QCM-D and GD1a-rich SLB membranes we measure the binding kinetics of an anti-GD1a antibody that has similarities to a monoclonal antibody that is a hallmark of a variant of Guillain-Barre syndrome.


1998 ◽  
Vol 38 (6) ◽  
pp. 147-154 ◽  
Author(s):  
Hideo Utsumi ◽  
Sang-Kuk Han ◽  
Kazuhiro Ichikawa

Generation of hydroxyl radicals, one of the major active species in ozonation of water was directly observed with a spin-trapping/electron spin resonance (ESR) technique using 5,5-dimethyl-1-pyrrolineN-oxide (DMPO) as a spin-trapping reagent. Hydroxyl radical were trapped with DMPO as a stable radical, DMPO-OH. Eighty μM of ozone produced 1.08 X 10-6M of DMPO-OH, indicating that 1.4% of •OH is trapped with DMPO. Generation rate of DMPO-OH was determined by ESR/stopped-flow measurement. Phenol derivatives increased the amount and generation rate of DMPO-OH, indicating that phenol derivatives enhance •OH generation during ozonation of water. Ozonation of 2,3-, 2,5-, 2,6-dichlorophenol gave an ESR spectra of triplet lines whose peak height ratio were 1:2:1. ESR parameters of the triplet lines agreed with those of the corresponding dichloro-psemiquinone radical. Ozonation of 2,4,5- and 2,4,6-trichlorophenol gave the same spectra as those of 2,5- and 2,6-dichlorophenol, respectively, indicating that a chlorine group in p-position is substituted with a hydroxy group during ozonation. Amounts of the radical increased in an ozone-concentration dependent manner and were inhibited by addition of hydroxyl radical scavengers. These results suggest that p-semiquinone radicals are generated from the chlorophenols by hydroxyl radicals during ozonation. The p-semiquinone radicals were at least partly responsible for enhancements of DMPO-OH generation.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2020 ◽  
Vol 16 (3) ◽  
pp. 358-362
Author(s):  
Renan S. Teixeira ◽  
Paulo H.D. Carvalho ◽  
Jair A.K. Aguiar ◽  
Valquíria P. Medeiros ◽  
Ademar A. Da Silva Filho ◽  
...  

Background: Arctigenin is a lignan found in Arctium lappa L. (Asteraceae) that displays anti-inflammatory activities. Previous studies showed that the crude extract of A. Lappa has antitumor activity in human liver carcinoma, lung and stomach cancer cells. The aim of this study was to obtain arctigenin from A. lappa L., as well as to evaluate its antiproliferative effects in cells of liver carcinoma (HepG2) and fibroblasts (NIH/3T3). Methods: Arctigenin was obtained from the hydrolysis of arctiin, which was isolated from the crude extract of A. lappa. The effects of arctigenin and arctiin on HepG2 cell viability and cell adhesion were analyzed by MTT method. Adhesion assay was also carried out to evaluate the antitumor activity. Results: Our results showed that the analytical process to obtain arctigenin was fast and easy. In vitro experiments showed that arctigenin (107-269 μM) decreased HepG2 cells viability and did not cause cytotoxicity on NIH/3T3 cells. Arctigenin (27-269 μM) demonstrated anti-adhesion in HepG2 cells in a concentration-dependent manner, when compared with control. Conclusion: These results suggest a promising pharmacological activity for arctigenin as an antiproliferative compound.


Sign in / Sign up

Export Citation Format

Share Document