scholarly journals Hydropriming with Moringa Leaf Extract Mitigates Salt Stress in Wheat Seedlings

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1254
Author(s):  
Talaat Ahmed ◽  
Ahmed Abou Elezz ◽  
Muhammad Fasih Khalid

Salinity is the major constraint that decreases the yield and production of crops. Wheat has a significant value in agricultural food commodities. The germination and growth of wheat seedlings are a big challenge in salt-affected soils. The seed priming technique is used to mitigate salt stress and enhance the germination and growth of the crops. Therefore, the current study was conducted to evaluate the hydropriming of natural plant extract (moringa leaf extract) and water on wheat seeds and grown under different saline (0, 0.05, 0.1, 0.15, and 0.2 M NaCl) environments. The germination attributes (germination percentage, germination index, mean germination day, coefficient of variance, vigor index) and seedling growth (fresh weight, dry weight, root length, shoot length) were enhanced in the plants primed by moringa leaf extract. The germination percentage was observed 10% more at 0.2 M NaCl stress in seeds treated with moringa leaf extract than seeds treated with water. The nutrient (K, Ca, Mg, P, S, Fe, B, Mn, Zn, Cu) uptake was also observed more in the shoots and roots of wheat seedlings soaked in moringa leaf extract as compared to soaked in water. Controlled plants showed higher concentrations of toxic ions (Na) and reactive oxygen species (H2O2) in shoots and roots of wheat seedlings. The use of moringa leaf extract for priming wheat seeds will enhance their germination and growth by maintaining efficient nutrient uptake and restricting the toxic ions and reactive oxygen species accumulation.

2014 ◽  
Vol 58 (4) ◽  
pp. 751-757 ◽  
Author(s):  
L. H. Xu ◽  
W. Y. Wang ◽  
J. J. Guo ◽  
J. Qin ◽  
D. Q. Shi ◽  
...  

Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 175 ◽  
Author(s):  
Hipólito Hernández-Hernández ◽  
Antonio Juárez-Maldonado ◽  
Adalberto Benavides-Mendoza ◽  
Hortensia Ortega-Ortiz ◽  
Gregorio Cadenas-Pliego ◽  
...  

Saline stress severely affects the growth and productivity of plants. The activation of hormonal signaling cascades and reactive oxygen species (ROS) in response to salt stress are important for cellular detoxification. Jasmonic acid (JA) and the enzyme SOD (superoxide dismutase), are well recognized markers of salt stress in plants. In this study, the application of chitosan-polyvinyl alcohol hydrogels (Cs-PVA) and copper nanoparticles (Cu NPs) on the growth and expression of defense genes in tomato plants under salt stress was evaluated. Our results demonstrate that Cs-PVA and Cs-PVA + Cu NPs enhance plant growth and also promote the expression of JA and SOD genes in tomato (Solanum lycopersicum L.), under salt stress. We propose that Cs-PVA and Cs-PVA + Cu NPs mitigate saline stress through the regulation of oxidative and ionic stress.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 428 ◽  
Author(s):  
Sayed Mohsin ◽  
Mirza Hasanuzzaman ◽  
M. Bhuyan ◽  
Khursheda Parvin ◽  
Masayuki Fujita

The present study investigated the role of tebuconazole (TEB) and trifloxystrobin (TRI) on cucumber plants (Cucumis sativus L. cv. Tokiwa) under salt stress (60 mM NaCl). The cucumber plants were grown semi-hydroponically in a glasshouse. Plants were exposed to two different doses of fungicides (1.375 µM TEB + 0.5 µM TRI and 2.75 µM TEB + 1.0 µM TRI) solely and in combination with NaCl (60 mM) for six days. The application of salt phenotypically deteriorated the cucumber plant growth that caused yellowing of the whole plant and significantly destructed the contents of chlorophyll and carotenoids. The oxidative damage was created under salinity by increasing the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) resulting in the disruption of the antioxidant defense system. Furthermore, in the leaves, stems, and roots of cucumber plants increased Na+ content was observed under salt stress, whereas the K+/Na+ ratio and contents of K+, Ca2+, and Mg2+ decreased. In contrast, the exogenous application of TEB and TRI reduced the contents of MDA, H2O2, and EL by improving the activities of enzymatic and non-enzymatic antioxidants. In addition, ion homeostasis was regulated by reducing Na+ uptake and enhanced K+ accumulation and the K+/Na+ ratio after application of TEB and TRI. Therefore, this study indicates that the exogenous application of TEB and TRI enhanced salt tolerance in cucumber plants by regulating reactive oxygen species production and antioxidant defense systems.


2018 ◽  
Vol 19 (11) ◽  
pp. 3347 ◽  
Author(s):  
Yayun Wang ◽  
Hui Zhao ◽  
Hua Qin ◽  
Zixuan Li ◽  
Hai Liu ◽  
...  

The root plays an important role in the responses of plants to stresses, but the detailed mechanisms of roots in stress responses are still obscure. The GDP-mannose pyrophosphate synthetase (GMPase) OsVTC1-3 is a key factor of ascorbic acid (AsA) synthesis in rice roots. The present study showed that the transcript of OsVTC1-3 was induced by salt stress in roots, but not in leaves. Inhibiting the expression of OsVTC1-3 by RNA interfering (RI) technology significantly impaired the tolerance of rice to salt stress. The roots of OsVTC1-3 RI plants rapidly produced more O2−, and later accumulated amounts of H2O2 under salt stress, indicating the impaired tolerance of OsVTC1-3 RI plants to salt stress due to the decreasing ability of scavenging reactive oxygen species (ROS). Moreover, exogenous AsA restored the salt tolerance of OsVTC1-3 RI plants, indicating that the AsA synthesis in rice roots is an important factor for the response of rice to salt stress. Further studies showed that the salt-induced AsA synthesis was limited in the roots of OsVTC1-3 RI plants. The above results showed that specifically regulating AsA synthesis to scavenge ROS in rice roots was one of important factors in enhancing the tolerance of rice to salt stress.


2017 ◽  
Vol 182 (4) ◽  
pp. 1663-1674 ◽  
Author(s):  
Sung-Jo Kim ◽  
Eunmi Hwang ◽  
Sun Shin Yi ◽  
Ki Duk Song ◽  
Hak-Kyo Lee ◽  
...  

2016 ◽  
Vol 141 ◽  
pp. 158-169 ◽  
Author(s):  
Mohammad Abul Farah ◽  
Mohammad Ajmal Ali ◽  
Shen-Ming Chen ◽  
Ying Li ◽  
Fahad Mohammad Al-Hemaid ◽  
...  

2021 ◽  
Vol 17 (2) ◽  
pp. 295
Author(s):  
Veeraraghavan Vishnu Priya ◽  

It is of interest to document the effect of Emblica officinalis (E. officinalis) and Zingiber officinalae (Z. officinalae) leaf extract on reactive oxygen species, antioxidant potential changes in arsenic and lead-induced toxicity in male rats. We used 8 groups of adult male Wistar rats with 1 control group for this study. The animals were divided into Group I: Control and Group II: Lead and sodium arsenite induced rats (animals were induced for metal toxicity by the combined administration of arsenic (13.8 mg/kg body weight) and lead (116.4 mg/kg body weight). These doses were administered by gastric intubation during 14 consecutive days using known standard procedures. Arsenic and lead induced rats treated with ethanolic extract of Emblica officinalis (60 mg/kg body weight/day, orally for 45 days) are group III rats.Group IV animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis (120 mg/kg body weight/day for 45 days). Group V animals are arsenic and lead induced rats treated orally with ethanolic extracts of Z. officinalae (60 mg/kg body weight/day for 45 days). Group VI animals are arsenic and lead induced rats orally treated with ethanolic extracts of Zingiber officinalis (120 mg/kg body weight/day for 45 days). Group VII animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis and Z. officinalae (60 + 60 mg/kg body weight/day for 45 days). Group VIII animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis and Z. officinalae (120 + 120 mg/kg body weight/day, orally for 45 days). Normal Control animals were treated orally with ethanolic extracts of E. officinalis (120mg/kg body weight) + Z. officinalae (120mg/kg body weight) for 45 days. The control and experimental animals were then subjected to analysis for oxidative stress markers such as H2O2, *OH, and lipid peroxidation (LPO), antioxidant enzymes in addition to liver and kidney function markers. Results: Arsenic and lead induced rats showed a significant increase in the levels of reactive oxygen species (H2O2, OH* and LPO) with concomitant alterations in the renal and liver tissues. However, enzymic and non-enzymic antioxidant levels were decreased. Nevertheless, an oral effective dose of E. officinalis and Z. officinalae (120 + 120 mg/kg body weight/day increased the antioxidant enzymes and retrieved the altered levels of ROS and LPO that were induced by arsenic and lead. Thus, we show that E. officinalis and Z. officinalae leaf extract exhibits nephroprotective and hepatoprotective role through the restoration of reactive oxygen species and antioxidant enzymes in the kidney and liver tissue of Arsenic and Lead-induced nephrotoxicity and hepatotoxicity in rats. Hence, E. officinalis and Z. officinalae leaf extract are potential therapeutic options for the treatment of metal toxicity-induced kidney and liver diseases.


Sign in / Sign up

Export Citation Format

Share Document