scholarly journals Relationship of Salinity Tolerance to Na+ Exclusion, Proline Accumulation, and Antioxidant Enzyme Activity in Rice Seedlings

Agriculture ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 166 ◽  
Author(s):  
Maha Abdelaziz ◽  
Tran Xuan ◽  
Ahmad Mekawy ◽  
Hongliang Wang ◽  
Tran Khanh

Rice is a staple crop for over 50% of the world’s population, but its sensitivity to salinity poses a threat to meeting the worldwide demand. This study investigated the correlation of salinity tolerance to Na+ exclusion, proline accumulation, and the activity of antioxidant enzymes in some rice cultivars originating from Egypt. Giza 182 was shown to be the most tolerant of the five cultivars, as judged by visual symptoms of salt injury, growth parameters, and patterns of Na+ accumulation, while Sakha 105 appeared to be highly susceptible. In detail, Giza 182 accumulated the lowest Na+ concentration and maintained a much lower Na+/K+ ratio in all plant organs in comparison to Sakha 105. The salinity-tolerant varieties had higher accumulation of proline than the salinity-susceptible cultivars. The salinity-tolerant Giza 182 accumulated a higher concentration of proline, but the lipid peroxidation (MDA) level was significantly reduced compared to in the salinity-susceptible Sakha 105. In addition, Giza 182 had stronger activity of both catalase (CAT) and ascorbate peroxidase (APX) compared to Sakha 105. The findings of this study reveal that the salinity tolerance in rice is primarily attributable to Na+ exclusion, the accumulation of proline in rice organs, a low Na+/K+ ratio, and a low level of lipid peroxidation. The levels of the antioxidant enzymes CAT and APX and the accumulation of proline may play important roles in salinity tolerance in rice. However, the comparative involvement of individual antioxidant enzymes in salinity stress in rice should be further investigated. Giza 182 has the potential to be cultivated in salinity-affected areas, although the effects of salinity stress on its grain yield and quality should be evaluated during the full crop cycle.

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Mervat Sh. Sadak ◽  
Iman M. Talaat

Abstract Background Chitosan and Ca+ are natural signal molecules that can be used in agriculture as biostimulants and elicitors. They enhance different physiological responses and mitigate the negative effects of salinity. So, this investigation was done to study the effect of soaking wheat grains in chitosan and CaCO3 (20 and 40 mg/L) on alleviating the adverse effect of salinity stress (0.0 and 5000 mg/L) on growth, some biochemical and physiological and yields of wheat plant. Results Shoot length (cm), leaves no/tiller, shoot dry weight (g), root fresh weight (g) and root dry weight (g) were significantly decreased as a result of salt stress. Soaking wheat grains in Chitosan or CaCO3 significantly promoted plant growth under normal and stressed conditions. Irrigation of wheat plants with saline water significantly decreased photosynthetic pigments (Chlo-a, Chlo-b, carotenoids and total pigments) in addition to Chlo-a/Chlo-b ratio, indole acetic acid content in the plant leaves. Meanwhile, saline water significantly increased phenolics, total soluble sugars (TSS) and proline content. H2O2 and lipid peroxidation expressed by malondialdehyde (MDA) content clearly showed significant increases under salinity stress compared with untreated control. Soaking wheat grains in chitosan or CaCO3 before sawing significantly increased the accumulation of H2O2 and MDA in the leaves of wheat plants. Treatment of wheat grains with chitosan or CaCO3 significantly promoted the activity of various antioxidant enzymes (SOD and POX) as compared to the control. CAT activity was significantly decreased as a result of chitosan or CaCO3 treatments. The highest CAT activity was recorded in plants irrigated with 5000 mg/L saline water followed by control plants which recoded 36.40 and 24.82 U/min/g FW, respectively. On the other hand, irrigation of wheat plants with 5000 mg/L saline water significantly decreased spike length (cm), spikelets no/spike, grains wt/plant (g), 1000-grains wt (g), yield and biomass/plant (g) as well as, carbohydrate % and protein % compared with the control. However, treating wheat plants either with Chitosan or calcium carbonate resulted in obvious significant increases in carbohydrates and protein contents, especially in plants treated with 40 mg/L chitosan followed by 40 mg/L calcium carbonate. Soaking wheat grains in chitosan, especially at 40 mg/L, exhibited the strongest scavenging potential (2,2-diphenyl-1-picryl-hydrazyl-hydrate assay (DPPH%) followed by treatment with 40 mg/L CaCO3. Conclusion In conclusion, the used treatment enhanced the protective parameters such as antioxidant enzymes, total phenols and free radical scavengers and consequently helped the plants to decrease lipid peroxidation, increased their tolerance and improved yield and spike quality. Application of 40 mg/L chitosan recorded the highest increment in the scavenging ability of the natural antioxidants of the plant extract toward the stable free radical DPPH.


2018 ◽  
Vol 7 (5) ◽  
pp. 2259
Author(s):  
Rupali Seth

The present study was undertaken to assess the genotypic variation for salinity tolerance in five commercial cultivars of tomato (Solanum lycopersicum L.) grown in Maharashtra. Growth parameters such as shoot length, root length, fresh weight and dry weight were assessed at control, 50 mM and 100 mM NaCl with Hoagland’s solution. The shoot/root length and fresh/dry weight declined at 100 mM stress. Proline accumulated as a consequence of salt stress. On the basis of growth parameters and proline accumulation cultivars Abhinav and Rohini were tolerant, TO1389 and N2535 moderately tolerant and Naina sensitive towards salinity stress.


Author(s):  
Sahar El-Nahrawy ◽  
Mohamed Yassin

Salinity is one of the key restraints to agricultural productivity worldwide and is expected to increase further. Therefore, cope with this problem we should be develop strategies to enhance salinity tolerance in different crops. One of these modern strategies is to use plant growth promoting rhizobacteria (PGPR) which can help plants to withstand under harsh environmental conditions. The present study was evaluated six isolates of Azotobacter sp. (Az1-Az6) which tested in vitro for growth, PGPR traits such as indole-3 acetic acid (IAA) production and nitrogen fixation, germination indicators for different wheat cultivars i.e. Misr 1, Gemmiza 12 and Sakha 95 under different levels of NaCl. Also, the efficacy of inoculation with two superior isolates in different wheat cultivars in a Gnotobiotic Sand System and greenhouse experiment for improving growth dynamics, physiological attributes, nutrient uptake and antioxidant enzymes under different levels salinity of sandy soil (0, 4, 8 and 12 dS m-1). Out of 6 isolates, two isolates (Az2 and Az6) could show salinity tolerance and exhibited PGPR traits as well as improvement germination tests. Both the bacteria could promote growth in 3 cultivars of wheat tested in terms of increase in fresh weight, dry weight, root and shoot length as well as root colonization compared to uninoculated control under Gnotobiotic Sand System experiment.  Under greenhouse experiment conditions, inoculation treatment with Az6 showed a significant increase of vegetative growth, physiological and biochemical parameters of different wheat cultivars under different salinity stress treatments. Also, Az6 treatment recorded the highest N% from wheat plants attained 2.64, 2.51 and 2.43% at 4 dS m-1 for Misr1, Sakha 95 and Gemmiza 12 cultivars, respectively but the highest K+, K+/Na+% and the lowest Na+% were obtained from plants that grown in soil salinized with 8 and 12 dS m-1. The same trend was observed for antioxidant enzymes. Thus, inoculation with Azotobacter isolates Az2 and Az6 could be efficiently used to partially or completely eliminate the effects of salt stress on growth of different wheat cultivars.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0248207
Author(s):  
Zahra Jabeen ◽  
Hafiza Asma Fayyaz ◽  
Faiza Irshad ◽  
Nazim Hussain ◽  
Muhammad Nadeem Hassan ◽  
...  

Salinity is among the major abiotic stresses negatively affecting the growth and productivity of crop plants. Sodium nitroprusside (SNP) -an external nitric oxide (NO) donor- has been found effective to impart salinity tolerance to plants. Soybean (Glycine max L.) is widely cultivated around the world; however, salinity stress hampers its growth and productivity. Therefore, the current study evaluated the role of SNP in improving morphological, physiological and biochemical attributes of soybean under salinity stress. Data relating to biomass, chlorophyll and malondialdehyde (MDA) contents, activities of various antioxidant enzymes, ion content and ultrastructural analysis were collected. The SNP application ameliorated the negative effects of salinity stress to significant extent by regulating antioxidant mechanism. Root and shoot length, fresh and dry weight, chlorophyll contents, activities of various antioxidant enzymes, i.e., catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) were improved with SNP application under salinity stress compared to control treatment. Similarly, plants treated with SNP observed less damage to cell organelles of roots and leaves under salinity stress. The results revealed pivotal functions of SNP in salinity tolerance of soybean, including cell wall repair, sequestration of sodium ion in the vacuole and maintenance of normal chloroplasts with no swelling of thylakoids. Minor distortions of cell membrane and large number of starch grains indicates an increase in the photosynthetic activity. Therefore, SNP can be used as a regulator to improve the salinity tolerance of soybean in salt affected soils.


Author(s):  
. Kavita ◽  
Nagaram Sowmya

The study was carried out to evaluate the influence of application of Trichoderma viride and Bacillus subtilis on antioxidant enzymes, proline and lipid peroxidation to decrease the impact of salinity stress on chickpea (Cicer arietinum L.), a salinity sensitive crop. A pot experiment was conducted with contrasting set of genotypes (tolerant vs. sensitive) under salinity stress compared to control soil conditions in completely randomized design with three replications. Microbial inoculation was done through seed priming and application to soil at 20 days after sowing (DAS). Content of antioxidant enzymes, proline, and lipid peroxidation were assessed in leaves at flowering stage. Results showed that antioxidant enzymes viz., catalase, peroxidase, and superoxide dismutase were significantly increased under salinity stress compared to control condition and they were further increased with application of microbes either as seed priming alone or in combination with soil application at 20 DAS in both the genotypes under saline as well as control conditions. The content of lipid peroxidation increased significantly under salinity stress, and it was stronger pronounced in sensitive genotype while the lipid peroxidation content was decreased by application of microbes. Proline content increased under salinity stress, and it was further enhanced by the microbial inoculation. The study thus conclusively proved that Bacillus subtilis and Trichoderma viride positively increased content of antioxidant enzymes, proline, and lipid peroxidation in leaves of chickpea grown under salinity stress conditions. The best microbe species was Trichoderma viride as seed priming plus soil application. This can be an important additional approach to decrease the impact of salinity stress on chickpea crop.


HortScience ◽  
2016 ◽  
Vol 51 (11) ◽  
pp. 1427-1434 ◽  
Author(s):  
Mahvash Zarei ◽  
Majid Azizi ◽  
Majid Rahemi ◽  
Ali Tehranifar

The effects of NaCl stress on some growth parameters and ion accumulation in roots, shoots, and leaves of four fig genotypes (S × P, S × K, S × Sh, and S × D) were investigated. Eight-month-old fig plants growing in a mixture of sand, leaf mold, and clay (1:1:1) were irrigated with solutions containing NaCl at various levels: 0.6 (S0), 4 (S1), 6 (S2), and 8 (S3) dS·m−1. Salinity stress decreased growth parameters to a different extent in each genotype. Leaf water potential, stomatal conductance (gS), leaf number, shoot height, and root fresh weight were significantly decreased by salinity; and among the four fig genotypes studied, S × P and S × K were the most sensitive and the most tolerant genotypes, respectively. Furthermore, the highest reduction in shoot diameter and shoot fresh and dry weight were observed in S × Sh and the lowest reduction in S × K. Root dry weight decreased by increasing salinity, mainly in S × D. At S1 salinity treatment in both S × Sh and S × D genotypes, Na+ ion concentration was higher in leaves than in roots, but this pattern was not evident in S × P and S × K genotypes in NaCl treatments below S2 and S3, respectively. Chloride concentrations in all organs increased and were higher in roots than in both leaves and shoots, except in S × D genotype that accumulated more Cl− ion in leaves than in roots at S2 and S3 levels. These results indicate that the ability to sequester Na+ and Cl− ions in roots differs among the genotypes used in this study. Overall, results indicated that salinity tolerance in fig tree is strongly associated with Na+ and Cl− ions exclusion mechanism from shoots. Moreover, to our surprise, salinity stress considerably increased K+ ion concentration in leaves and shoots of salt-sensitive genotypes. Our proposed explanation is that the inability of salt-sensitive fig genotypes to prevent delivery of hazardous ions to shoot is compensated by tissue tolerance mechanism. Keeping high cytosolic K+ ion may lead to better sequestration of Na+ ion in vacuoles and, therefore, enable the genotypes with poor Na+ exclusion mechanism to handle large amounts of Na+ ion in leaves. Finally, S × K is the most salt-tolerant genotype due to efficient exclusion of Na+ and Cl− ions and lower reduction in growth factors.


Sign in / Sign up

Export Citation Format

Share Document