scholarly journals Response of Soil Temperature, Moisture, and Spring Maize (Zea mays L.) Root/Shoot Growth to Different Mulching Materials in Semi-Arid Areas of Northwest China

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 453
Author(s):  
Haidong Lu ◽  
Zhenqing Xia ◽  
Yafang Fu ◽  
Qi Wang ◽  
Jiquan Xue ◽  
...  

Adaptive highly efficient mulching technologies for use on dryland agricultural ecosystems are crucial to improving crop productivity and water-use efficiency (WUE) under climate change. Little information is available on the effect of using different types of mulch on soil water thermal conditions, or on root/shoot trait, leaf area index (LAI), leaf area duration (LAD), yield, and WUE of spring maize. Hence, in this study, white transparent plastic film (WF), black plastic film (BF), and maize straw (MS) was used, and the results were compared with a non-mulched control (CK). The results showed that the mean soil temperature throughout the whole growth period of maize at the 5–15 cm depth under WF and BF was higher than under MS and CK, but under BF, it was 0.6 °C lower than WF. Compared with CK, the average soil water storage (0–200 cm) over the whole growth period of maize was significantly increased under WF, BF, and MS. WF and BF increased the soil water and temperature during the early growth stages of maize and significantly increased root/shoot biomass, root volume, LAI, LAD, and yield compared with MS. Higher soil temperatures under WF obviously reduced the duration of maize reproductive growth and accelerated root and leaf senescence, leading to small root/shoot biomass accumulation post-tasseling and to losses in yield compared with BF

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1330 ◽  
Author(s):  
Yin Zhao ◽  
Xiaomin Mao ◽  
Manoj K. Shukla ◽  
Sien Li

The Soil–Water–Atmosphere–Plant (SWAP) model does not have a mulching module to simulate the effect of film mulching on soil water, heat dynamics and crop growth. In this study, SWAP model parameters were selected to simulate the soil water–heat process and crop growth, taking into account the effect of film mulching on soil evaporation, temperature, and crop growth, in order to predict the influence of future climate change on crop growth and evapotranspiration (ET). A most suitable scheme for high yield and water use efficiency (WUE) was studied by an experiment conducted in the Shiyang River Basin of Northwest China during 2017 and 2018. The experiment included mulching (M1) and non-mulching (M0) under three drip irrigation treatments, including full (WF), medium (WM), low (WL) water irrigation. Results demonstrated that SWAP simulated soil water storage (SWS) well, soil temperature at various depths, leaf area index (LAI) and aboveground dry biomass (ADB) with the normalized root mean square error (NRMSE) of 16.2%, 7.5%, 16.1% and 16.4%, respectively; and yield, ET, and WUE with the mean relative error (MRE) of 10.5%, 12.4% and 14.8%, respectively, under different treatments on average. The measured and simulated results showed film mulching could increase soil temperature, promote LAI during the early growth period, and ultimately improve ADB, yield and WUE. Among the treatments, M1WM treatment with moderate water deficit and film mulching could achieve the target of more WUE, higher yield, less irrigation water. Changes in atmospheric temperature, precipitation, and CO2 concentration are of worldwide concern. Three Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, RCP8.5) showed a negative effect on LAI, ADB and yield of seed-maize. The yield of seed-maize on an average decreased by 33.2%, 13.9% under the three RCPs scenarios for film mulching and non-mulching, respectively. Predicted yields under film mulching were lower than that under non-mulching for the next 30 years demonstrating that current film mulching management might not be suitable for this area to improve crop production under the future climate scenarios.


2013 ◽  
Vol 404 ◽  
pp. 415-419
Author(s):  
Heng Jia Zhang ◽  
Jun Hui Li

The soil water contents in spring maize field were monitored continuously using soil neutron probe combined with drying-weighing method. Meanwhile, the effect of limited irrigation on crop periodic water consumption and its percentage in total water use, leaf area index, and grain yield of spring maize were explored. The results indicated that both the periodic water consumption and its percentage in total water use varied from low to high then to low within maize growing season, with the maximum valued both at silking to middle grain filling. In addition, leaf area indexes were greatly improved by full irrigation before maize filling, and grain yield was not reduced by efficient limited irrigation management, contrarily, yield increase and 31.1% of significant irrigation water saving were achieved, which was beneficial to the optimization of soil water ecological processing and limited irrigation management.


2015 ◽  
Vol 153 (7) ◽  
pp. 1292-1301 ◽  
Author(s):  
H. STEPHAN ◽  
U. BÖTTCHER ◽  
H. KAGE

SUMMARYIn most regions, sugar beet is normally sown as a spring crop. If sown in autumn the crop remains on the field over winter and may achieve fast re-growth in spring from assimilates stored within the beet, allowing earlier leaf growth and light interception in spring. The specific leaf area (SLA) (ratio between leaf surface and leaf mass) is mainly affected by leaf area expansion and consequently affects productivity in early growth stages. The aim of the present study was (i) to examine the SLA dynamics of autumn-sown sugar beet before and after winter and (ii) to develop an empiric approach describing SLA changes during the growth period. A field trial in northern Germany with three different sowing times (mid-April, mid-June and mid-August) and varying plant densities (148 000, 246 000 and 370 000 plants/ha) was carried out in 2009/10 to 2011/12. The average SLA of the canopy was the highest (>25 m2/kg) directly after emergence, then decreased until autumn (<13 m2/kg) and increased again up to 20 m2/kg during re-growth of winter sugar beet in spring. A stepwise multiple regression analysis revealed mean photosynthetically active radiation over 10 days before measurement (PARmean), leaf area index (LAI), mean temperature over 10 days before measurement (Tmean) and temperature sum since sowing (Tsum) as the main influences on SLA dynamics. The strongest correlation to SLA was shown by Tmean (r = 0·69) and the weakest by Tsum (r = −0·28). A multiple linear regression model was fitted to the dataset with Tmean, PARmean and log (Tsum) achieving an adjusted R2 of 0·64. This empirical equation is suitable for use in a crop growth model for winter sugar beet.


2010 ◽  
Vol 34 (6) ◽  
pp. 2011-2020 ◽  
Author(s):  
Milton da Veiga ◽  
Dalvan José Reinert ◽  
José Miguel Reichert

Tillage affects soil physical properties, e.g., porosity, and leads to different amounts of mulch on the soil surface. Consequently, tillage is related to the soil temperature and moisture regime. Soil cover, temperature and moisture were measured under corn (Zea mays) in the tenth year of five tillage systems (NT = no-tillage; CP = chisel plow and single secondary disking; CT = primary and double secondary disking; CTb = CT with crop residues burned; and CTr = CT with crop residues removed). The tillage systems were combined with five nutrient sources (C = control; MF = mineral fertilizer; PL = poultry litter; CS = cattle slurry; and SS = swine slurry). Soil cover after sowing was greatest in NT (88 %), medium in CP (38 %) and lowest in CT treatments (< 10 %), but differences decreased after corn emergence. Soil temperature was related with soil cover, and significant differences among tillage were observed at the beginning of the growing season and at corn maturity. Differences in soil temperature and moisture in the surface layer of the tilled treatments were greater during the corn cycle than in untilled treatments, due to differences in intensity of soil mobilization and mulch remaining after soil management. Nutrient sources affected soil temperature and moisture in the most intense part of the corn growth period, and were related to the variation of the corn leaf area index among treatments


Author(s):  
Cássia B. Machado ◽  
José R. de S. Lima ◽  
Antonio C. D. Antonino ◽  
Eduardo S. de Souza ◽  
Rodolfo M. S. Souza ◽  
...  

ABSTRACT Studies that investigate the relationships between CO2 fluxes and evapotranspiration (ET) are important for predicting how agricultural ecosystems will respond to climate changes. However, none was made on the maize-grass intercropping system in Brazil. The aim of this study was to determine the ET and CO2 fluxes in a signal grass pasture intercropped with maize, in São João, Pernambuco, Brazil, in a drought year. Furthermore, the soil water storage (SWS) and leaf area index (LAI) were determined. The latent heat flux was the main consumer of the available energy and the daily and seasonal ET and CO2 variations were mainly controlled by rainfall, through the changes in soil water content and consequently in SWS. The agroecosystem acted as an atmospheric carbon source, during drier periods and lower LAI, and as an atmospheric carbon sink, during wetter periods and higher LAI values. In a dry year, the intercropping sequestered 2.9 t C ha-1, which was equivalent to 8.0 kg C ha-1 d-1. This study showed strong seasonal fluctuations in maize-grass intercropping CO2 fluxes, due to seasonality of rainfall, and that this agroecosystem is vulnerable to low SWS, with significant reduction in CO2 uptake during these periods.


Bragantia ◽  
2012 ◽  
Vol 71 (3) ◽  
pp. 394-399 ◽  
Author(s):  
Djeimi Isabel Janisch ◽  
Jerônimo Luiz Andriolo ◽  
Vinícius Toso ◽  
Kamila Gabriele Ferreira dos Santos ◽  
Jéssica Maronez de Souza

The objective of this research was to determine growth and dry matter partitioning among organs of strawberry stock plants under five Nitrogen concentrations in the nutrient solution and its effects on emission and growth of runner tips. The experiment was carried out under greenhouse conditions, from September 2010 to March 2011, in a soilless system with Oso Grande and Camino Real cultivars. Nitrogen concentrations of 5.12, 7.6, 10.12 (control), 12.62 and 15.12 mmol L-1 in the nutrient solution were studied in a 5x2 factorial randomised experimental design. All runner tips bearing at least one expanded leaf (patent requested) were collected weekly and counted during the growth period. The number of leaves, dry matter (DM) of leaves, crown and root, specific leaf area and leaf area index (LAI) was determined at the final harvest. Increasing N concentration in the nutrient solution from 5.12 to 15.12 mmol L-1 reduces growth of crown, roots and LAI of strawberry stock plants but did not affect emission and growth of runner tips. It was concluded that for the commercial production of plug plants the optimal nitrogen concentration in the nutrient solution should be 5.12 mmol L-1.


Irriga ◽  
2010 ◽  
Vol 15 (1) ◽  
pp. 98-110 ◽  
Author(s):  
Maria Renata Rocha Pereira ◽  
Guilherme Sasso Ferreira Souza ◽  
Andreia Cristina Peres Rodrigues ◽  
Andre Luiz Melhorança Filho ◽  
Antonio Evaldo Klar

O estudo objetivou avaliar o desempenho de genótipos de plantas de Eucalyptus urograndis (clone 105 e 433) em relação à tolerância à seca, considerando a análise de crescimento das plantas. Para tanto, plantas foram cultivadas em vasos de 8 litros em casa de vegetação. O delineamento foi em inteiramente casualizado, com quatro tratamentos contendo desesseis repetições. O manejo hídrico foi estabelecido com base em dois potenciais mínimos de água (Ψ): -0,03 e -1,5 MPa, através da pesagem diária dos vasos. O desenvolvimento das plantas foi avaliado em coletas a intervalos de 15 dias, iniciando no momento de plantio da muda no vaso até os 60 dias após plantio. Considerando-se o acúmulo de matéria seca total (MS) e o índice de área foliar da planta (IAF) como base para a determinação dos seguintes índices fisiológicos: razão de área foliar (RAF), taxa assimilatória líquida (TAL), área foliar específica (AFE), taxa de crescimento relativo (TCR) e taxa de crescimento absoluto (TCA). Nas condições do experimento, o clone 105 apresentou menor sensibilidade ao déficit hídrico, o que o qualifica como material genético promissor para ambientes sujeitos a estiagem prolongada. Já em condições em que não há restrição hídrica, os dois clones tiveram comportamento semelhantes.   UNITERMOS: Eucaliptus urograndis, índices fisiológicos, potenciais hídricos do solo     PEREIRA, M. R. R.; SOUZA, G. S. F. de; RODRIGUES, A. C. P.; MELHORANÇA FILHO, A. L.; KLAR, A. E. GROWTH ANALYSIS OF CLONE EUCALIPTUS UNDER HYDRIC STRESS     2 ABSTRACT   The aim of this study was to evaluate Eucaliptus grandis genotypes (Clones 105 and 433) in relation to drought  tolerance, through growth plant analysis.  Black PVC pots with 10 liter volume were used for cultivate plants in polyethilene greenhouse oriented east/west. Completely randonmized design with four treatments was used: two clones and two minimum soil water  potentials ( - 0.03 and -1,5 MPa) and sixteen replicates.  Pots were weighed daily in order to evaluate water content and characteristic soli water curve was determined. Plant development was obtained each 15 days from planting until 60 days  through  total dry matter (DM), leaf area index (LAI),  leaf area ratio (LAR), net assimilative ratio (NAR), specific leaf area (SLA), relative growth ratio (RGR) and absolute growth ratio (AGR). Results showed that clone 105 presented less sensibility to water deficit, which qualify it as genetic material for use under dry soil conditons.  On the other hand, both clones had similar behavior with no water restrictions.   KEYWORDS: Eucaliptus grandis, soil water potentials, morphologic measurements.  


2014 ◽  
Vol 955-959 ◽  
pp. 4034-4038
Author(s):  
Luo Jian Mo ◽  
Wen Bin Li ◽  
Yong Chang Ye ◽  
Yong Wen Zhou ◽  
Song Song Liu ◽  
...  

Transect sampling method was used to measure structural attributes of landscape trees in urban green space of three city parks and one residential greenbelt in Dongguan. Leaf area index (LAI) of the landscape trees in each urban green space was determined using hemispherical photography. Average DBH (diameter at the breast height) and CW(crown width) in Wenhua Square were the largest due to the presence of heritage large trees, while the landscape trees were species diverse in Renmin Park. A comparison of LAI in the green space gave a result in descending order: Renmin Park > Wenhua Square > Jinhuwan greenbelt > Yuanmei Park. The case of Renmin Park indicated that when a green space consisted of various structural attributes, landscape trees in different growth stages tended to have large LAI. Findings of our study suggested that a diversity of trees with potentially different LAI should be selected when planning urban green space.


2020 ◽  
Vol 12 (11) ◽  
pp. 1843 ◽  
Author(s):  
Andrew Revill ◽  
Anna Florence ◽  
Alasdair MacArthur ◽  
Stephen Hoad ◽  
Robert Rees ◽  
...  

Leaf area index (LAI) estimates can inform decision-making in crop management. The European Space Agency’s Sentinel-2 satellite, with observations in the red-edge spectral region, can monitor crops globally at sub-field spatial resolutions (10–20 m). However, satellite LAI estimates require calibration with ground measurements. Calibration is challenged by spatial heterogeneity and scale mismatches between field and satellite measurements. Unmanned Aerial Vehicles (UAVs), generating high-resolution (cm-scale) LAI estimates, provide intermediary observations that we use here to characterise uncertainty and reduce spatial scaling discrepancies between Sentinel-2 observations and field surveys. We use a novel UAV multispectral sensor that matches Sentinel-2 spectral bands, flown in conjunction with LAI ground measurements. UAV and field surveys were conducted on multiple dates—coinciding with different wheat growth stages—that corresponded to Sentinel-2 overpasses. We compared chlorophyll red-edge index (CIred-edge) maps, derived from the Sentinel-2 and UAV platforms. We used Gaussian processes regression machine learning to calibrate a UAV model for LAI, based on ground data. Using the UAV LAI, we evaluated a two-stage calibration approach for generating robust LAI estimates from Sentinel-2. The agreement between Sentinel-2 and UAV CIred-edge values increased with growth stage—R2 ranged from 0.32 (stem elongation) to 0.75 (milk development). The CIred-edge variance between the two platforms was more comparable later in the growing season due to a more homogeneous and closed wheat canopy. The single-stage Sentinel-2 LAI calibration (i.e., direct calibration from ground measurements) performed poorly (mean R2 = 0.29, mean NRMSE = 17%) when compared to the two-stage calibration using the UAV data (mean R2 = 0.88, mean NRMSE = 8%). The two-stage approach reduced both errors and biases by >50%. By upscaling ground measurements and providing more representative model training samples, UAV observations provide an effective and viable means of enhancing Sentinel-2 wheat LAI retrievals. We anticipate that our UAV calibration approach to resolving spatial heterogeneity would enhance the retrieval accuracy of LAI and additional biophysical variables for other arable crop types and a broader range of vegetation cover types.


Sign in / Sign up

Export Citation Format

Share Document