scholarly journals Soil Respiration under 90 Year-Old Rye Monoculture and Crop Rotation in the Climate Conditions of Central Poland

Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Tomasz Sosulski ◽  
Magdalena Szymańska ◽  
Ewa Szara ◽  
Piotr Sulewski

This study, aimed at assessing the rate of soil respiration under different crop rotation and fertilization conditions, was carried out on long-term (since 1923) experimental plots with rye monoculture and 5-crop rotation in Skierniewice (Central Poland). The treatments included mineral-organic (CaNPK+M) and organic (Ca+M) fertilization (where M is farmyard manure). Soil respiration was measured in situ by means of infrared spectroscopy using a portable FTIR spectrometer Alpha. CO2 fluxes from CaNPK+M-treated soils under cereals cultivated in monoculture and crop rotations were not statically different. Respiration of soil under lupine cultivated in crop rotation was higher than under cereals. N-fertilization and its succeeding effect increased soil respiration, and significantly altered its distribution over the growing season. Our results indicate that in the climatic conditions of Central Europe, respiration of sandy soils is more dependent on the crop species and fertilization than on the crop rotation system. Omission of mineral fertilization significantly decreases soil respiration. The CO2 fluxes were positively correlated with soil temperature, air temperature, and soil content of NO3− and NH4+.

Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 113 ◽  
Author(s):  
Mariangela Diacono ◽  
Paola Baldivieso-Freitas ◽  
Francisco Sans Serra

Optimization of the nitrogen (N) inputs and minimization of nutrient losses strongly affect yields in crop rotations. The aim of this research was to evaluate the effect of agricultural practices on yield and N use in a 4-year cereal-legume rotation in organic farming and to identify the best combination of these practices. The following treatments were compared: conventional plough (P) vs. reduced chisel (RC) tillage; composted farmyard manure (F) vs. unfertilized control (NF); and green manure (GM) vs. no green manure (NoM). No significant differences were found for N use efficiency between P and RC in each crop. The results suggested that legumes in the tested rotation do not need supplemental N fertilization, particularly if combining GM and F. The use of composted farmyard manure should be considered in a long-term fertilization plan for cereals, to allow a higher efficiency in N use. The residual effect of fertilization over time, along with the site-specific pedo-climatic conditions, should also be considered. In both tested tillage approaches, soil N surplus was the highest in plots combining GM and F (i.e., more than 680 kg N ha−1 in combination with RC vs. about 140 kg N ha−1 for RC without fertilization), with a risk of N losses by leaching. The N deficit in NoM–NF both combined with P and RC would indicate that these treatment combinations are not sustainable for the utilized crops in the field experiment. Therefore, the combination of the tested practices should be carefully assessed to sustain soil fertility and crop production.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2473
Author(s):  
Lukáš Hlisnikovský ◽  
Ladislav Menšík ◽  
Eva Kunzová

If available to farmers, potatoes represent a crop classically fertilized with farmyard manure in the Czech Republic. At the same time, potatoes are a crop sensitive to soil–climate conditions. We evaluated the effect of cattle manure (FYM), manure and mineral nitrogen (FYM + N1, FYM + N2), manure and mineral fertilizers (FYM + N1PK, FYM + N2PK, FYM + N3PK) application and the effect of three soil-climatic conditions (Caslav—maize production area with degraded Chernozem, Ivanovice—maize production area with Chernozem, Lukavec—potatoes production area with Cambisol) over four years (2016–2019) on potatoes yield and soil chemical properties. Of all the factors, yields were most affected by location. Lukavec provided the highest average yields (37.2 t ha−1), followed by Ivanovice (23.5 t ha−1) and Caslav (15.5 t ha−1). The second most important factor was the climatic conditions of the year. Fertilization was the third most important parameter. FYM significantly increased yields compared to Control, but applied alone cannot cover the needs of potatoes. Similarly, the application of FYM and N increases yields, but for the highest yields, it is best to apply FYM + NPK (80 kg ha−1 N). Co-application of FYM and mineral N fertilizers mitigates the negative impact of mineral N on soil pH.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1340
Author(s):  
Auldry Chaddy ◽  
Lulie Melling ◽  
Kiwamu Ishikura ◽  
Kah Joo Goh ◽  
Yo Toma ◽  
...  

A long-term study on the effect of nitrogen (N) fertilization on soil carbon dioxide (CO2) fluxes in tropical peatland was conducted to (1) quantify the annual CO2 emissions from an oil palm plantation under different N application rates and (2) evaluate the temporal effects of groundwater level (GWL) and water-filled pore space (WFPS) on soil organic carbon (SOC) and CO2 fluxes. Monthly measurement of soil CO2 fluxes using a closed chamber method was carried out from January 2010 until December 2013 and from January 2016 to December 2017 in an oil palm plantation on tropical peat in Sarawak, Malaysia. Besides the control (T1, without N fertilization), there were three N treatments: low N (T2, 31.1 kg N ha−1 year−1), moderate N (T3, 62.2 kg N ha−1 year−1), and high N (T4, 124.3 kg N ha−1 year−1). The annual CO2 emissions ranged from 7.7 ± 1.2 (mean ± SE) to 16.6 ± 1.0 t C ha−1 year−1, 9.8 ± 0.5 to 14.8 ± 1.4 t C ha−1 year−1, 10.5 ± 1.8 to 16.8 ± 0.6 t C ha−1 year−1, and 10.4 ± 1.8 to 17.1 ± 3.9 t C ha−1 year−1 for T1, T2, T3, and T4, respectively. Application of N fertilizer had no significant effect on annual cumulative CO2 emissions in each year (p = 0.448), which was probably due to the formation of large quantities of inorganic N when GWL was temporarily lowered from January 2010 to June 2010 (−80.9 to −103.4 cm below the peat surface), and partly due to low soil organic matter (SOM) quality. A negative relationship between GWL and CO2 fluxes (p < 0.05) and a positive relationship between GWL and WFPS (p < 0.001) were found only when the oil palm was young (2010 and 2011) (p < 0.05), indicating that lowering of GWL increased CO2 fluxes and decreased WFPS when the oil palm was young. This was possibly due to the fact that parameters such as root activity might be more predominant than GWL in governing soil respiration in older oil palm plantations when GWL was maintained near or within the rooting zone (0–50 cm). This study highlights the importance of roots and WFPS over GWL in governing soil respiration in older oil palm plantations. A proper understanding of the interaction between the direct or indirect effect of root activity on CO2 fluxes and balancing its roles in nutrient and water management strategies is critical for sustainable use of tropical peatland.


2015 ◽  
Vol 76 (2) ◽  
pp. 129-143
Author(s):  
Krzysztof T. Wroński ◽  
Barbara Przybylska

Abstract Soil respiration was measured on rusty soil in a dry forest near Łódź. A two-year series of soil respiration measurements was divided into characteristic sub-periods, and the relationship between soil CO2 emissions to selected aspects of climatic conditions was examined. The temperature dependence of soil CO2 fluxes is linear from March to June and exponential during the period of June to March. Dividing the year into a phase of growth and a phase of decline and modelling soil respiration for each of these sub-periods separately does not significantly improve the accuracy of the model. Research shows that soil respiration responds with a delay of three days to changes in temperature and relative humidity, but with a 17-day delay to changes in precipitation.


2014 ◽  
Vol 60 (No. 4) ◽  
pp. 151-157 ◽  
Author(s):  
M. Kulhánek ◽  
J. Balík ◽  
J. Černý ◽  
F. Vašák ◽  
Š. Shejbalová

The aim of this work is to evaluate the changes of Mehlich 3 &ndash; P, K, Ca and Mg contents in soil during a long-term field experiments with sewage sludge, farmyard manure (FYM) and mineral NPK (NPK) application, compared to the control non-fertilized treatment. The experiment was established at the Humpolec and Suchdol sites (Czech Republic). Potatoes, wheat and barley were grown in crop rotation. Fertilizing system was based on the same nitrogen dose of 330 kg N/ha per one crop rotation. Archive soil samples from the beginning of the experiment (1996) and from the end of each year&rsquo;s crop rotation (1999, 2002, 2005, 2008 and 2011) were analyzed. In spite of the different soil-climatic conditions of the studied sites, very similar tendencies of P, K, Ca and Mg contents changes after the fertilizing systems used were observed in the soil. In case of the same nitrogen dose (330 kg N/ha), sewage sludge appeared to be better source of bioavailable soil phosphorus compared to the farmyard manure and NPK. On the contrary, FYM was a better source of bioavailable potassium and magnesium, despite the lower total magnesium content in FYM. The NPK treatment was the best long-term source of bioavailable potassium.


2013 ◽  
Vol 48 (2) ◽  
pp. 17-25 ◽  
Author(s):  
Krystyna Elkner ◽  
Jan Rumpel

Effect of crop rotation and fertilization on quality of tomato cv. New Yorker was studied in field conditions in a long term, static experiment, conducted in Skierniewice since 1922. Tomatoes in crop rotation were cultivated on same field every third year. whereas these in monoculture were continuously cultivated on same field for 9 consecutive years (1980-1988). The fertilization treatments included: l) farmyard manure in rate of 40 t per hectare, annually, 2) mineral fertilization of 150 kg N. 100 kg P<sub>2</sub>O<sub>5</sub> and 200 kg K<sub>2</sub>O per hectare, 3) farmyard manure plus mineral fertilization as in treatments 1 and 2 and, 4) mineral fertilization as in treatment 2 plus microelements in form of a multimineral, commercial fertilizer (Polichelat LS 7). Crop rotation had no significant influence on the content of soluble solids, colour and weight of fruits. However, tomato fruits from plants cultivated in rotation, as compared to those from monoculture, contained more organic acids and pectins, less nitrates, had lower pH and greater firmness. The effect of fertilization was similar in rotated and non-rotated cultivation. At combined manure and mineral NPK fertilization, tomato fruits showed higher content of soluble solids, organic acids and pectins than these from the other fertilization treatments. Fruits of plants fertilized with farmyard manure only had higher content of vitamin C and lower one of nitrates, soluble solids and organic acids and also lower firmness as compared these from other fertilization in trial.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1225
Author(s):  
Omar Kherif ◽  
Mounir Seghouani ◽  
Bahia Zemmouri ◽  
Abderrahim Bouhenache ◽  
Mohamed Islam Keskes ◽  
...  

Wheat–chickpea intercrops are not well studied, despite the importance of these two species in increasing agricultural profitability and ensuring nutritional and food security. The present study aims to assess the intercropping arable system’s services under contrasting field management and climate conditions. Simultaneously, this assessment focuses on the most agronomic and ecological indices widely used in the literature. Durum wheat (Triticum turgidum durum L.cv. VITRON) and chickpea (Cicer arietinum L.cv. FLIP 90/13 C) were cultivated, both in sole crop and intercrop during the 2018/2019 growing season. A field experiment was carried out under controlled conditions at three contrasting pedoclimatic sites and under three levels of N fertilization. Both grain and N yield of mixture crop were significantly higher (+11%) when chickpea and durum wheat were grown together under either low or moderate N application. Soil N availability as compared to the critical level increased by more than 19% from flowering to harvest stage for intercropped wheat under low N application (N-30 and N-60), while it decreased significantly for intercropped chickpea. In rich N soils and under low rainfall conditions (site 1 and 3), intercropping was generally more advantageous for yield (+14%), N yield (+23%), and land use (103 and 119.5% for grain and N yield, respectively) only with reduced N fertilization as assessed using both land equivalent ratio (LER) and land-use efficiency (LUE). Competition dominance was directly affected by changes in climatic conditions over sites; intercropped wheat was more competitive than their respective chickpea under low rainfall conditions. These findings illustrate the crucial role of competitive index assessment in intercropping to promise a robust method for crop N and yield diagnosis during fertilization decision-making.


1956 ◽  
Vol 48 (2) ◽  
pp. 160-163 ◽  
Author(s):  
Harold H. Mann ◽  
T. W. Barnes

The rate at which organic matter added to soils decomposes under temperate conditions seems to have been little studied. It depends, as Russell (1950) remarks, on the soil aeration, the calcium supply, and the temperature, and tends, in an arable soil, to an equilibrium value depending on the crop rotation practised for a given soil under given climatic conditions. And while this equilibrium value is lowest for a rotation containing a high proportion of wide-spaced intertilled crops or cultivated fallows, it increases with crops of small grains or grass. The results at Rothamsted, Broadbalk Field, as judged by the nitrogen content, show that this equilibrium value with no organic additions has remained almost constant from 1865 to 1945 and similarly, at a higher level, where 14 tons of farmyard manure are applied annually, has remained constant from 1914 to 1945.


2017 ◽  
Vol 4 (3) ◽  
pp. 62-72
Author(s):  
O. Zhukorsky ◽  
O. Nykyforuk ◽  
N. Boltyk

Aim. Proper development of animal breeding in the conditions of current global problems and the decrease of anthropogenic burden on environment due to greenhouse gas emissions, caused by animal breeding activity, require the study of interaction processes between animal breeding and external climatic conditions. Methods. The theoretical substantiation of the problem was performed based on scientifi c literature, statistical informa- tion of the UN Food and Agriculture Organization and the data of the National greenhouse gas emissions inventory in Ukraine. Theoretically possible emissions of greenhouse gases into atmosphere due to animal breeding in Ukraine and specifi c farms are calculated by the international methods using the statistical infor- mation about animal breeding in Ukraine and the economic-technological information of the activity of the investigated farms. Results. The interaction between the animal breeding production and weather-and-climate conditions of environment was analyzed. Possible vectors of activity for the industry, which promote global warming and negative processes, related to it, were determined. The main factors, affecting the formation of greenhouse gases from the activity of enterprises, aimed at animal breeding production, were characterized. Literature data, statistical data and calculations were used to analyze the role of animal breeding in the green- house gas emissions in global and national framework as well as at the level of specifi c farms with the consid- eration of individual specifi cities of these farms. Conclusions. Current global problems require clear balance between constant development of sustainable animal breeding and the decrease of the carbon footprint due to the activity of animal breeding.


2020 ◽  
pp. 26-28
Author(s):  
Н.Т. Чеботарев ◽  
Н.Н. Шергина

Пахотные угодья Республики Коми в основном представлены дерново-подзолистыми почвами с низким естественным плодородием, которые без применения удобрений быстро подвергаются деградационным процессам, что резко снижает их продуктивность. Цель исследований: оценка эффективности долговременного применения органических и минеральных удобрений при выращивании картофеля в кормовом севообороте в условиях Республики Коми. Методической основой выполнения работ были комплексные исследования дерново-подзолистых почв, клубней картофеля на участках многолетнего полевого эксперимента, заложенного на землях Института агробиотехнологий ФИЦ Коми НЦ УрО РАН в соответствии с «Методическими указаниями географической сети опытов с удобрениями». Длительный период исследований (более 40 лет) характеризовался различными климатическими условиями, которые отразились на количестве урожая и качестве клубней картофеля. Было проведено 7 ротаций (14 лет) с выращиванием картофеля. Вносили органические удобрения – торфонавозный компост (ТНК) в дозах 40 и 80 т/га (1 и 2 фон, соответственно) под картофель и минеральные удобрения – NPК в дозах 1/3; 1/2 и 1 для восполнения выноса растениями элементов питания. Установлено положительное влияние комплексного применения органических и минеральных удобрений на урожайность и качество картофеля, а также на плодородие дерново-подзолистой легкосуглинистой среднеокультуренной почвы в кормовом севообороте в почвенно-климатических условиях Республики Коми. В результате применения шестипольного севооборота и комплексного внесения удобрений с 1978 года к 2019 году в почвах снизилась обменная и гидролитическая кислотность; повысилось содержание гумуса на 0,5% (в контроле); на 0,2–0,5% (с тремя дозами минеральных удобрений); на 0,3–1,1% (с ТНК); на 0,2–1,6% (при совместном применении органических и минеральных удобрений). Наибольшие урожаи картофеля получены при совместном применении органических (80 т/га) и минеральных удобрений (1 NPК) и составили 37,1 т/га клубней (8,5 тыс/га кормовых единиц). При таком соотношении удобрений показано высокое качество клубней картофеля: содержание крахмала 15,5%, витамина С – 19,4 мг%, сырого протеина – 14,1%. Количество нитратного азота не превышало ПДК (ПДК 250 мг.с.м.). Экономические расчеты показали, что при внесении ТНК 40 т/га + 1 NPК в дерново-подзолистые почвы с.-х. использования в среднетаежной зоне Республики Коми при выращивании картофеля, условный чистый доход составит 68,4 тыс. р. с 1 га, себестоимость 1 т картофеля – 2,8 тыс. р., рентабельность 188,7%. The arable land of the Republic of Komi is mainly represented by dern-sub-ground soils with low natural fertility, which without the use of fertilizers are quickly subjected to degradation processes, which dramatically reduces their productivity. The aim of the research is to evaluate the efficiency of long-term use of organic and mineral fertilizers in the growing of potatoes in feed crop rotation in the conditions of the Komi Republic. The methodological basis for carrying out the works was comprehensive studies of dern-subhead soils, potato tubers on the sites of a multi-year field experiment laid on the lands of the Institute of Agrobiotechnology of the FRC Komi SC UB RAS in accordance with the «Methodological Instructions of the Geographical Network of Experiments with Fertilizers». A long period of research (more than 40 years) was characterized by different climatic conditions, which affected the number of crops and the quality of potato tubers. There were 7 rotations (14 years) with potato cultivation. Organic fertilizers – peat-avous compost (TNK) in doses of 40 and 80 t/ha (1 and 2 background, respectively) for potatoes and mineral fertilizers – NPK in doses of 1/3; 1/2 and 1 to replenish the carry-out of food elements by plants. The positive effect of the integrated use of organic and mineral fertilizers on the yield and quality of potatoes, as well as on the fertility of soddy-podzolic light loamy medium cultivated soil in fodder crop rotation in the soil and climatic conditions of the Komi Republic, has been established. As a result of the use of six-bed crop rotation and the integrated application of fertilizers, metabolic and hydrolytic acidity decreased in soils from 1978 to 2019; humus content increased by 0.5% (in control); 0.2–0.5% (with three doses of mineral fertilizers); 0.3–1.1% (with TNCs); 0.2–1.6% (with combined use of organic and mineral fertilizers). The largest potato yields were obtained from the combined use of organic (80 t/ha) and mineral fertilizers (1 NPK) and amounted to 37.1 t/ha tubers (8.5 thousand/ha feed units). The largest potato harvests were obtained with the combined use of organic (80 t/ha) and mineral fertilizers (1 NPK) and amounted to 37.1 t/ha of tubers (8.5 thousand/ha of feed units). With this ratio of fertilizers, the high quality of potato tubers was also determined: the starch content was 15.5%, vitamin C – 19.4 mg%, crude protein – 14.1%. The amount of nitrate nitrogen did not exceed the MPC (MPC 250 mg.s.m.). Economic calculations showed that if TNK is added 40 t/ha 1 NPK to the dern-sub-ground soils of agricultural use in the medium-sized zone of the Komi Republic when growing potatoes, the conditional net income will be 68.4 thousand rubles from 1 ha, the cost of 1 t of potatoes – 2.8 thousand rubles, profitability 188.7%.


Sign in / Sign up

Export Citation Format

Share Document