scholarly journals Panicle Nitrogen Strategies for Nitrogen-Efficient Rice Varieties at a Moderate Nitrogen Application Rate in the Lower Reaches of the Yangtze River, China

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 192
Author(s):  
Chengxin Ju ◽  
Tao Liu ◽  
Chengming Sun

Nitrogen (N) management is of great importance in rice production, but most previous studies have focused on high N rates and there is a lack of research on management plans under a moderate N rate. This study aimed to explore the agronomic and physiological traits of N-efficient rice varieties (NEVs) and to optimize the management strategy at an N rate below the inflection point of the parabolic curve between N rate and grain yield. Two NEVs and two N-inefficient rice varieties (NIVs) were planted, and three treatments were designed according to the panicle N application method. A larger amount of N applied at panicle initiation (PI) led to higher rice yield and N-use efficiency (NUE). This was mainly due to increases in the total number of spikelets per unit area, root oxidation activity, leaf area duration, and leaf photosynthesis rate as well as to the increased carbon (C) and N utilization rates. Compared with NIVs, NEVs exhibited improved root and shoot functions and higher C and N transport characteristics at the moderate N rate. We suggest that increasing the application of N at PI and that planting of NEVs are important ways to increase rice yield and NUE when adopting moderate N rates.

2017 ◽  
Vol 8 (2) ◽  
pp. 328-332
Author(s):  
J. Zhang ◽  
Y. Miao ◽  
W.D. Batchelor

Over-application of nitrogen (N) in rice (Oryza sativaL.) production in China is common, leading to low N use efficiency (NUE) and high environmental risks. The objective of this work was to evaluate the ability of the CERES-Rice crop growth model to simulate N response in the cool climate of Northeast China, with the long term goal of using the model to develop optimum N management recommendations. Nitrogen experiments were conducted from 2011–2015 in Jiansanjiang, Heilongjiang Province in Northeast China. The CERES-Rice model was calibrated for 2014 and 2015 and evaluated for 2011 and 2013 experiments. Overall, the model gave good estimations of yield across N rates for the calibration years (R2=0.89) and evaluation years (R2=0.73). The calibrated model was then run using weather data from 2001–2015 for 20 different N rates to determine the N rate that maximized the long term marginal net return (MNR) for different N prices. The model results indicated that the optimum mean N rate was 120–130 kg N ha–1, but that the simulated optimum N rate varied each year, ranging from 100 to 200 kg N ha–1. Results of this study indicated that the CERES-Rice model was able to simulate cool season rice growth and provide estimates of optimum regional N rates that were consistent with field observations for the area.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 263 ◽  
Author(s):  
Jing Zhang ◽  
Yuxin Miao ◽  
William Batchelor ◽  
Junjun Lu ◽  
Hongye Wang ◽  
...  

Efficient use of nitrogen (N) fertilizer is critically important for China’s food security and sustainable development. Crop models have been widely used to analyze yield variability, assist in N prescriptions, and determine optimum N rates. The objectives of this study were to use the CERES-Rice model to simulate the N response of different high-latitude, adapted flooded rice varieties to different types of weather seasons, and to explore different optimum rice N management strategies with the combinations of rice varieties and types of weather seasons. Field experiments conducted for five N rates and three varieties in Northeast China during 2011–2016 were used to calibrate and evaluate the CERES-Rice model. Historical weather data (1960–2014) were classified into three weather types (cool/normal/warm) based on cumulative growing degree days during the normal growing season for rice. After calibrating the CERES-Rice model for three varieties and five N rates, the model gave good simulations for evaluation seasons for top weight (R2 ≥ 0.96), leaf area index (R2 ≥ 0.64), yield (R2 ≥ 0.71), and plant N uptake (R2 ≥ 0.83). The simulated optimum N rates for the combinations of varieties and weather types ranged from 91 to 119 kg N ha−1 over 55 seasons of weather data and were in agreement with the reported values of the region. Five different N management strategies were evaluated based on farmer practice, regional optimum N rates, and optimum N rates simulated for different combinations of varieties and weather season types over 20 seasons of weather data. The simulated optimum N rate, marginal net return, and N partial factor productivity were sensitive to both variety and type of weather year. Based on the simulations, climate warming would favor the selection of the 12-leaf variety, Longjing 21, which would produce higher yield and marginal returns than the 11-leaf varieties under all the management strategies evaluated. The 12-leaf variety with a longer growing season and higher yield potential would require higher N rates than the 11-leaf varieties. In summary, under warm weather conditions, all the rice varieties would produce higher yield, and thus require higher rates of N fertilizers. Based on simulation results using the past 20 years of weather data, variety-specific N management was a practical strategy to improve N management and N partial factor productivity compared with farmer practice and regional optimum N management in the study region. The CERES-Rice crop growth model can be a useful tool to help farmers select suitable precision N management strategies to improve N-use efficiency and economic returns.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 462
Author(s):  
Chengxin Ju ◽  
Yiwen Zhu ◽  
Tao Liu ◽  
Chengming Sun

The reduction of nitrogen (N) fertilizer during the rice growing season is an important practice in rice production and is ecologically beneficial. Will different N reduction stages affect rice yields and NUE? The timing of the reduction in N-efficient varieties (NEVs) is yet to be identified, especially under moderate N rate applications. We investigated the effectiveness of various N reduction stages (NRSs) on grain yield and N-use efficiency (NUE) in NEVs in the lower reaches of the Yangtze River in China. Two NEVs were grown in the field, and five N reduction treatments, including basal N reduction (BR) at pre-transplanting (PT), tillering N reduction (TR) at early tillering (ET), promoting-spikelet N reduction (PR) at panicle initiation (PI), keeping-spikelet N reduction (KR) at spikelet differentiation (SD), and N split reduction (SR) at all four stages, were adopted, with no N reduction (CK) and no N application (N0) as controls. The results showed that grain yield and NUE varied substantially with the NRSs. Yield decreases were observed in descending order of magnitude in BR, PR, SR, TR, and KR when compared to CK. For both NEVs, BR and PR were the most effective treatments in decreasing yield and NUE at the same N reduction rate. BR and PR markedly decreased the panicles per unit area or spikelets per panicle, root biomass, root length, root length density, and root oxidation activity and exhibited simultaneously decreased leaf area index, grain leaf ratio, shoot biomass, and crop growth rate from joining to the heading and from heading to maturity. According to the results, PT and PI were considered to be N reduction sensitive stages, and ET and SD were considered to be N reduction insensitive stages. According to the results, an N reduction strategy was suggested as follows: N reduction at SD and ET, with increased N proportions at PT and PI for NEVs when adopting moderate N application rates.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 490
Author(s):  
Peng Ma ◽  
Yan Lan ◽  
Xu Lv ◽  
Ping Fan ◽  
Zhiyuan Yang ◽  
...  

To determine the influence of N fertilizer management on rice yield and rice quality under diversified rotations and establish a high-yield, high-quality, and environmentally friendly diversified planting technology, a rapeseed/wheat–rice rotation system for 2 successive years was implemented. In those rotation systems, a conventional N rate (Nc; 180 kg/hm2 N in rape season, 150 kg/hm2 N in wheat season) and a reduced N rate (Nr; 150 kg/hm2 N in rape season, 120 kg/hm2 N in wheat season) were applied. Based on an application rate of 150 kg/hm2 N in the rice season, three N management models were applied, in which the application ratio of base:tiller:panicle fertilizer was 20%:20%:60% in treatment M1, 30%:30%:40% in treatment M2, and 40%:40%:20% in treatment M3. Zero N was used as the control (M0). The results showed that, under Nc and Nr in the rape season, M3 management produced an increase in rice yield. The average rice yields in 2018 and 2019 were 9.41 t/hm2 and 9.54 t/hm2, respectively. An increase in rice peak viscosity, hot viscosity, break disintegration, and chalkiness was achieved. Under Nc and Nr in the wheat season, the panicle fertilizer of 40%:40%:20% in rice season produced a higher rice yield. The average yield was 9.45 t/hm2 and 9.19 t/hm2, respectively, and an increase in rice peak viscosity, hot viscosity, and break disintegration was produced. Reduced N for rapeseed and the panicle fertilizer of 40%:40%:20% in rice season under a rapeseed–rice rotation system can be recommended to stabilize yield and ensure high-quality rice production and environmentally friendly rapeseed–rice rotation systems in southern China.


2018 ◽  
Vol 55 (04) ◽  
pp. 637-648 ◽  
Author(s):  
MIN HUANG ◽  
SHUANGLÜ SHAN ◽  
XIAOBING XIE ◽  
XUEFENG ZHOU ◽  
YINGBIN ZOU ◽  
...  

SUMMARYTransplanting single seedlings rather than seedlings in clumps has been increasingly attractive in hybrid rice production in China due to reduced seed requirements and higher grain yield. This study was conducted to determine grain yield and nitrogen (N) utilization in response to reductions in the N rate in hybrid rice under single-seedling transplanting. Field experiments were done in 2015 and 2016 on a moderate to high fertility soil at the Experimental Farm of Hunan Agricultural University, China. The hybrid rice cultivar Liangyoupeijiu (LYPJ) was used in 2015, and two hybrid cultivars LYPJ and Xiangliangyou 900 were used the next year. In each year, the rice plants transplanted with a single seedling per hill were grown with three N rates, including the usual N rate (150 kg ha–1) and two reduced N rates (120 and 90 kg ha–1). Grain yield, yield attributes, and N uptake and use efficiency were determined for each N rate. Significant reduction in grain yield was observed in only one of three cultivar-year combinations when N rate was reduced by 20% (from 150 to 120 kg ha–1), and the magnitude of yield reduction was only 4%. Although significant reduction in grain yield was observed in two of the three cultivar-year combinations when N rate reduced by 40% (to 90 kg ha–1), the highest yield reduction was only 7%. Yield attributes were generally changed slightly when N rate was reduced by 20%, while compensation among yield attributes and N utilization characteristics could explain why a 40% reduction in N rate did not result in substantial yield loss. Partial factor productivity of applied N (PFPN) was increased by 21–24% and 56–63% with 20% and 40% reductions in the N rate, respectively. The higher PFPN with a reduced N rate was attributed to higher recovery efficiency of applied N (REN) or to both higher REN and internal N use efficiency. Our study suggests that reducing N rate does not necessarily result in yield loss due to compensation among yield components and increased N use efficiency in hybrid rice transplanted as single seedlings under moderate to high soil fertility conditions.


Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 39 ◽  
Author(s):  
Fazli Hameed ◽  
Junzeng Xu ◽  
Shah Rahim ◽  
Qi Wei ◽  
Anis Rehman Khalil ◽  
...  

Major challenge in rice production is to achieve the goal of enhancing both food production and fertilizer use efficiency. Rice growth simulation model, ORYZA (v3) was used in the present study to evaluate the model under continuous flooded (CF) and alternate wetting and drying (AWD) regimes with different fertilizer nitrogen (N) rates with different N splits using a historical data of past 45 years. The model satisfactorily simulated crop biomass and nitrogen uptake at both irrigation regimes and fertilizers N rates and splits. The yield differences among the years were large due to climate change, but enhanced by N rates. The response of N curves was different at both water regimes. At 0 N rate, the slope for agronomic efficiency (AE) was high which tends to decrease with increase in N rates. With the one split basal application of N, lowest yield was found with high physiological efficiencies (PE), lowest fertilizer recoveries (RE) and lowest agronomic efficiency (AE). For both water applications and fertilizer levels, high yield with high nitrogen uptake, AE, RE and partial factor productivity (PFP) were witnessed high at four split (3:3:3:1), while having low physiological efficiency. The water productivity (irrigation + rainfall) WPI+R at basal in one N split for AWD at 150 kg N ha−1 was 1.19 kg m−3 and for CF was 0.82 kg m−3, whereas for 225 kg N ha−1 WPI+R of AWD was 1.50 kg m−3 and 1.14 kg m−3 for CF. In general, AWD exhibited high WPI+R with no rice yield penalty compared to CF. Splitting with the proper amount of fertilizer N resulted in good water productivity and nitrogen efficiencies, could lead to high rice yield.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11077
Author(s):  
Guoying Yang ◽  
Hongting Ji ◽  
Hongjiang Liu ◽  
Yanfang Feng ◽  
Yuefang Zhang ◽  
...  

Background Excessive nitrogen (N) application rate with low N use efficiency (NUE) caused a considerable amount of N losses, especially ammonia volatilization (AV). Proper N fertilizer reduction (RN) could significantly reduce AV. However, continuous RN led to a nutrient deficiency in the soil and therefore negatively impacted the NUE and rice yield. Paddy Azolla, a good green manure, is considered as a promising measure to decrease AV and improve NUE and grain yield of rice. However, there is limited information on the integrated effects of RN and Azolla cover on the AV, NUE, and rice yield, especially in the highly fertilized rice-growing systems. Methods The experiment was conducted including eight treatments: the control (without N fertilizer and Azolla cover), Azolla cover without N fertilizer (A), farmer’s N application rate (FN), FN + Azolla cover (FNA), 15% RN from FN (RN15), RN15 + Azolla cover (RN15A). 30% RN from FN (RN30), RN30 + Azolla cover (RN30A). The integrated effects of N fertilizer reduction and Azolla cover on AV, NUE, and rice grain was evaluated. Results RN15A and RN30A substantially reduced total AV by 50.3 and 66.9% compared with FN, respectively, primarily due to the lower surface water ammonia concentrations and pH. RN improved the efficiency of Azolla cover on reducing AV, with 4.1–9.9% higher than for FN. Compared with the FN, RN15A and RN30A enhanced apparent N recovery efficiency (ANRE) by 46.5 and 39.1%, which might be responsible for the lower NH3 emission and the increased total N uptake / total chemical N applied. Furthermore, RN15A and RN30A reduced yield-scaled volatilization by 52.3 and 64.3% than for FN, respectively. Thus, combining 15–30% RN with Azolla cover may be a way to reduce AV and improve ANRE without decreasing rice grain yield.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2715
Author(s):  
Eun-Hee Koh ◽  
Beom-Seok Hyun ◽  
Eunhee Lee ◽  
Min-Chul Kim ◽  
Bong-Rae Kang ◽  
...  

The application of synthetic nitrogen (N) fertilizers has boosted crop yields globally. However, it has also imposed on environmental pollution problems. An estimation of actual fertilizer N inputs at the crop field level is needed to establish effective N management plans to control groundwater NO3-N contamination. Here, a survey to collect the types of cultivated crop and fertilizer application rate was conducted during 2016–2018, covering 44,253 small crop fields (7730 ha) in the western part (Hanrim and Hankyung regions) of Jeju Island, South Korea. Foreign vegetables, citrus fruits, and bulb vegetables are the major crop types grown in the total cultivated areas of 2165.6 ha, 1718.7 ha, and 944.9 ha, respectively. For several crops (green garlic, potato, and chives), the over-use of N fertilizers is observed, the amount of which is 1.73–4.95 times greater than the standard fertilizer application rate. The highest level of fertilizer N input is observed for bulb vegetables in both the regions (Hanrim: 500.5 kg/ha, Hankyung: 487.1 kg/ha), with nearly 80% of the N fertilizer input turned into surplus N loading. A comparison between a spatial interpolation map of the fertilizer N input and that of the groundwater NO3-N concentration implies that the excessive use of synthetic fertilizer results in the degradation of groundwater quality by NO3-N. N management plans for the study area are suggested based on the N fertilizer input at the crop field level. This study highlights that sustainable N management plans should be arranged at the crop field level, considering the spatial heterogeneity of N fertilizer use.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1529
Author(s):  
Ahmad Numery Ashfaqul Haque ◽  
Md. Kamal Uddin ◽  
Muhammad Firdaus Sulaiman ◽  
Adibah Mohd Amin ◽  
Mahmud Hossain ◽  
...  

A pot experiment was executed to investigate the impact of biochar and compost with water-saving irrigation on the rice yield, water use efficiency, and physicochemical properties of soil. Two irrigation regimes—namely alternate wetting and drying (AWD) and continuous flooding (CF)—and four types of organic amendments (OA)—namely rice husk biochar (RHB), oil palm empty fruit bunch biochar (EFBB), compost and a control—were applied to evaluate their effects. Under the AWD irrigation regime, the maximum grain was produced by RHB (241.12 g), whereas under the same organic amendments, both AWD and CF produced a similar grain yield. Under the same organic amendment, a significantly higher water use efficiency (WUE) was observed from the AWD irrigation with RHB (6.30 g L−1) and EFBB (5.80 g L−1). Within the same irrigation regime, soil pH, cation exchange capacity, total carbon, total nitrogen and available phosphorus were enhanced due to the incorporation of biochar and compost, while higher soil exchangeable potassium was observed under CF irrigation for all treatments. RHB and EFBB significantly reduced the soil bulk density (up to 20.70%) and increased porosity (up to 16.70%) under both irrigation regimes. The results imply that the use of biochar with AWD irrigation could enhance the nutrient uptake and physicochemical properties of soil and allow rice to produce a greater yield with less water consumption.


Sign in / Sign up

Export Citation Format

Share Document