scholarly journals RNA-Seq Transcriptome Analysis of Potato with Differential Tolerance to Bentazone Herbicide

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 897
Author(s):  
Jing Guo ◽  
Xiuli Song ◽  
Shiqi Sun ◽  
Baihui Shao ◽  
Bo Tao ◽  
...  

Potato (Solanum tuberosum), an important food crop worldwide, is threatened by broadleaf weeds. Bentazone is an effective herbicide for controlling weeds; however, as a photosynthesis inhibitor, it can also affect potato plants. Therefore, screening potato seedlings for bentazone resistance and determining the genes involved is essential. Herein, we selected potato varieties with tolerance and sensitivity to bentazone. The photosynthetic rate of sensitive plants was notably affected by bentazone application, whereas the tolerant plants showed a significantly higher photosynthetic rate. We observed 95.7% bentazone degradation within 24 d after application in the tolerant plants. Transcriptome sequencing revealed that the numbers of differentially expressed genes (DEGs) between the tolerant and sensitive potato seedlings were 2703 and 11,024 before and after bentazone application, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the majority of DEGs were enriched in metabolic pathways, biosynthesis of secondary metals, carbon metabolism, glutathione metabolism, and photosynthesis. Polyphenol oxidase (PPO), flavonoid 3’,5’-methyltransferase-like (AOMT3), ribulose bisphosphate carboxylase small chain C (RBCS-C), and chalcone synthase 2 (CHS2) were identified as candidates contributing to bentazone tolerance. These results provide a theoretical basis for selecting potato stress-resistant resources in the future.

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2394 ◽  
Author(s):  
Sandeep Chakraborty

The unprecedented volume of genomic and transcriptomic data analyzed by software pipelines makes verification of inferences based on such data, albeit theoretically possible, a challenging proposition. The availability of intermediate data can immensely aid re-validation efforts. One such example is the transcriptome, assembled from raw RNA-seq reads, which is frequently used for annotation and quantification of genes transcribed. The quality of the assembled transcripts influences the accuracy of inferences based on them. Here the publicly available transcriptome from Cicer arietinum (ICC4958; Desi chickpea, http://www.nipgr.res.in/ctdb.html)1 was analyzed using YeATS2. This revealed that a majority of the highly expressed transcripts (HET) encoded multiple genes, strongly indicating that the counts may have been biased by the merging of different transcripts. TC00004 is ranked in the top five HET for all five tissues analyzed here, and encodes both a retinoblastoma-binding-like protein (E-value=0) and a senescence-associated protein (E-value= 5e-108). Fragmented transcripts are another source of error. The ribulose bisphosphate carboxylase small chain (RBCSC) protein is split into two transcripts with an overlapping amino acid sequence "ASNGGRVHC", TC13991 and TC23009, with length 201 and 332 nucleotides and expression counts 17.90 and 1403.8, respectively. The huge difference in counts indicates an erroneous normalization algorithm in determining counts. It is well known that RBCSC is highly expressed and expectedly TC23009 ranks fifth among HETs in the shoot. Furthermore, some transcripts are split into open reading frames that map to the same protein, although this should not have any significant bearing on the counts. It is proposed that studies analyzing differential expression based on the transcriptome should consider these artifacts, and providing intermediate assembled transcriptomes should be mandatory, possibly with a link to the raw sequence data (Bioproject).


2021 ◽  
Vol 22 (6) ◽  
pp. 3125
Author(s):  
Isabel Marques ◽  
Isabel Fernandes ◽  
Octávio S. Paulo ◽  
Fernando C. Lidon ◽  
Fábio M. DaMatta ◽  
...  

Understanding the effect of extreme temperatures and elevated air (CO2) is crucial for mitigating the impacts of the coffee industry. In this work, leaf transcriptomic changes were evaluated in the diploid C. canephora and its polyploid C. arabica, grown at 25 °C and at two supra-optimal temperatures (37 °C, 42 °C), under ambient (aCO2) or elevated air CO2 (eCO2). Both species expressed fewer genes as temperature rose, although a high number of differentially expressed genes (DEGs) were observed, especially at 42 °C. An enrichment analysis revealed that the two species reacted differently to the high temperatures but with an overall up-regulation of the photosynthetic machinery until 37 °C. Although eCO2 helped to release stress, 42 °C had a severe impact on both species. A total of 667 photosynthetic and biochemical related-DEGs were altered with high temperatures and eCO2, which may be used as key probe genes in future studies. This was mostly felt in C. arabica, where genes related to ribulose-bisphosphate carboxylase (RuBisCO) activity, chlorophyll a-b binding, and the reaction centres of photosystems I and II were down-regulated, especially under 42°C, regardless of CO2. Transcriptomic changes showed that both species were strongly affected by the highest temperature, although they can endure higher temperatures (37 °C) than previously assumed.


1984 ◽  
Vol 220 (3) ◽  
pp. 781-785 ◽  
Author(s):  
C N G Schmidt ◽  
S Gutteridge ◽  
M A J Parry ◽  
A J Keys

Wheat ribulose bisphosphate carboxylase can be converted from the slowly activating into the rapidly activating form by heat or effectors in the absence of CO2 and Mg2+. This conversion process had the same energy of activation of 95.6kJ/mol both in the presence and in the absence of effectors, whereas the free-energy change value ranged from +2.5kJ/mol to −3.4kJ/mol depending on the end product involved. Far-u.v. c.d. spectra measured before and after conversion indicated that ribulose bisphosphate carboxylase is an alpha/beta-class protein and that no significant changes in gross conformation occur. Signals in the near-u.v. region suggested that the main change during conversion is re-orientation of aromatic side chains, probably near the active site; a possible site for effector binding is discussed.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2394
Author(s):  
Sandeep Chakraborty

Background: The unprecedented volume of genomic and transcriptomic data analyzed by software pipelines makes verification of inferences based on such data, albeit theoretically possible, a challenging proposition. The availability of intermediate data can immensely aid re-validation efforts. One such example is the transcriptome, assembled from raw RNA-seq reads, which is frequently used for annotation and quantification of genes transcribed. The quality of the assembled transcripts influences the accuracy of inferences based on them. Method: Here the publicly available transcriptome from Cicer arietinum (ICC4958; Desi chickpea, http://www.nipgr.res.in/ctdb.html) was analyzed using YeATS. Results and Conclusion: The analysis revealed that a majority of the highly expressed transcripts (HET) encoded multiple genes, strongly indicating that the counts may have been biased by the merging of different transcripts. TC00004 is ranked in the top five HET for all five tissues analyzed here, and encodes both a retinoblastoma-binding-like protein (E-value=0) and a senescence-associated protein (E-value= 5e-108). Fragmented transcripts are another source of error. The ribulose bisphosphate carboxylase small chain (RBCSC) protein is split into two transcripts with an overlapping amino acid sequence ”ASNGGRVHC”, TC13991 and TC23009, with length 201 and 332 nucleotides and expression counts 17.90 and 1403.8, respectively. The huge difference in counts indicates an erroneous normalization algorithm in determining counts. It is well known that RBCSC is highly expressed and expectedly TC23009 ranks fifth among HETs in the shoot. Furthermore, some transcripts are split into open reading frames that map to the same protein, although this should not have any significant bearing on the counts. It is proposed that studies analyzing differential expression based on the transcriptome should consider these artifacts, and providing intermediate assembled transcriptomes should be mandatory, possibly with a link to the raw sequence data (Bioproject).


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 532 ◽  
Author(s):  
Zhexi Liu ◽  
Jianwei Huang ◽  
Yijuan Nie ◽  
Izhar Qazi ◽  
Yutao Cao ◽  
...  

As an important micronutrient, selenium (Se) plays many essential roles in immune response and protection against pathogens in humans and animals, but underlying mechanisms of Se-based control of salmonella growth within macrophages remain poorly elucidated. In this study, using RNA-seq analyses, we demonstrate that Se treatment (at an appropriate concentration) can modulate the global transcriptome of chicken macrophages HD11. The bioinformatic analyses (KEGG pathway analysis) revealed that the differentially expressed genes (DEGs) were mainly enriched in retinol and glutathione metabolism, revealing that Se may be associated with retinol and glutathione metabolism. Meanwhile, Se treatment increased the number of salmonella invading the HD11 cells, but reduced the number of salmonella within HD11 cells, suggesting that enhanced clearance of salmonella within HD11 cells was potentially modulated by Se treatment. Furthermore, RNA-seq analyses also revealed that nine genes including SIVA1, FAS, and HMOX1 were differentially expressed in HD11 cells infected with salmonella following Se treatment, and GO enrichment analysis showed that these DEGs were mainly enriched in an extrinsic apoptotic signaling pathway. In summary, these results indicate that Se treatment may not only affect retinol and glutathione metabolism in macrophages, but could also inhibit salmonella-induced macrophage apoptosis via an extrinsic apoptotic signaling pathway involving SIVA1.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 787-797
Author(s):  
Lizzie Cribb ◽  
Lisa N Hall ◽  
Jane A Langdale

Abstract Maize leaf blades differentiate dimorphic photosynthetic cell types, the bundle sheath and mesophyll, between which the reactions of C4 photosynthesis are partitioned. Leaf-like organs of maize such as husk leaves, however, develop a C3 pattern of differentiation whereby ribulose bisphosphate carboxylase (RuBPCase) accumulates in all photosynthetic cell types. The Golden2 (G2) gene has previously been shown to play a role in bundle sheath cell differentiation in C4 leaf blades and to play a less well-defined role in C3 maize tissues. To further analyze G2 gene function in maize, four g2 mutations have been characterized. Three of these mutations were induced by the transposable element Spm. In g2-bsd1-m1 and g2-bsd1-s1, the element is inserted in the second intron and in g2-pg14 the element is inserted in the promoter. In the fourth case, g2-R, four amino acid changes and premature polyadenylation of the G2 transcript are observed. The phenotypes conditioned by these four mutations demonstrate that the primary role of G2 in C4 leaf blades is to promote bundle sheath cell chloroplast development. C4 photosynthetic enzymes can accumulate in both bundle sheath and mesophyll cells in the absence of G2. In C3 tissue, however, G2 influences both chloroplast differentiation and photosynthetic enzyme accumulation patterns. On the basis of the phenotypic data obtained, a model that postulates how G2 acts to facilitate C4 and C3 patterns of tissue development is proposed.


2021 ◽  
Vol 9 (3) ◽  
pp. e001610
Author(s):  
Incheol Seo ◽  
Hye Won Lee ◽  
Sang Jun Byun ◽  
Jee Young Park ◽  
Hyeonji Min ◽  
...  

BackgroundNeoadjuvant chemoradiation therapy (CRT) is a widely used preoperative treatment strategy for locally advanced rectal cancer (LARC). However, a few studies have evaluated the molecular changes caused by neoadjuvant CRT in these cancer tissues. Here, we aimed to investigate changes in immunotherapy-related immunogenic effects in response to preoperative CRT in LARC.MethodsWe analyzed 60 pairs of human LARC tissues before and after irradiation from three independent LARC cohorts, including a LARC patient RNA sequencing (RNA-seq) dataset from our cohort and GSE15781 and GSE94104 datasets.ResultsGene ontology analysis showed that preoperative CRT significantly enriched the immune response in LARC tissues. Moreover, gene set enrichment analysis revealed six significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways associated with downregulated genes, including mismatch repair (MMR) genes, in LARC tissues after CRT in all three cohorts. Radiation also induced apoptosis and downregulated various MMR system-related genes in three colorectal cancer cells. One patient with LARC showed a change in microsatellite instability (MSI) status after CRT, as demonstrated by the loss of MMR protein and PCR for MSI. Moreover, CRT significantly increased tumor mutational burden in LARC tissues. CIBERSORT analysis revealed that the proportions of M2 macrophages and CD8 T cells were significantly increased after CRT in both the RNA-seq dataset and GSE94104. Notably, preoperative CRT increased various immune biomarker scores, such as the interferon-γ signature, the cytolytic activity and the immune signature.ConclusionsTaken together, our findings demonstrated that neoadjuvant CRT modulated the immune-related characteristics of LARC, suggesting that neoadjuvant CRT may enhance the responsiveness of LARC to immunotherapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaoyue Yu ◽  
Yu Pan ◽  
Yan Dong ◽  
Bin Lu ◽  
Chao Zhang ◽  
...  

Abstract Background As important forest tree species, biological stress and soil salinization are important factors that restrict the growth of Populus × euramericana. WRKYs are important transcription factors in plants that can regulate plant responses to biotic and abiotic stresses. In this study, PeWRKY31 was isolated from Populus × euramericana, and its bioinformation, salt resistance and insect resistance were analyzed. This study aims to provide guidance for producing salt-resistant and insect-resistant poplars. Results PeWRKY31 has a predicted open reading frame (ORF) of 1842 bp that encodes 613 amino acids. The predicted protein is the unstable, acidic, and hydrophilic protein with a molecular weight of 66.34 kDa, and it has numerous potential phosphorylation sites, chiefly on serines and threonines. PeWRKY31 is a zinc-finger C2H2 type-II WRKY TF that is closely related to WRKY TFs of Populus tomentosa, and localizes to the nucleus. A PeWRKY31 overexpression vector was constructed and transformed into Nicotiana tabacum L. Overexpression of PeWRKY31 improved the salt tolerance and insect resistance of the transgenic tobacco. Transcriptome sequencing and KEGG enrichment analysis showed the elevated expression of genes related to glutathione metabolism, plant hormone signal transduction, and MAPK signaling pathways, the functions of which were important in plant salt tolerance and insect resistance in the overexpressing tobacco line. Conclusions PeWRKY31 was isolated from Populus × euramericana. Overexpression of PeWRKY31 improved the resistance of transgenic plant to salt stress and pest stress. The study provides references for the generation of stress-resistant lines with potentially great economic benefit.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 178-179
Author(s):  
S. Alehashemi ◽  
M. Garg ◽  
B. Sellers ◽  
A. De Jesus ◽  
A. Biancotto ◽  
...  

Background:Systemic Autoinflammatory diseases present with sterile inflammation. NOMID (Neonatal-Onset Multisystem Inflammatory Disease) is caused by gain-of-function mutations inNLRP3and excess IL-1 production, presents with fever, neutrophilic dermatosis, aseptic meningitis, hearing loss and eye inflammation; CANDLE (Chronic Atypical Neutrophilic Dermatosis, Lipodystrophy and Elevated Temperature) is caused by loss-of-function mutations in proteasome genes that lead to type-1 interferon signaling, characterized by fever, panniculitis, lipodystrophy, cytopenia, systemic and pulmonary hypertension and basal ganglia calcification. IL-1 blockers are approved for NOMID and JAK-inhibitors show efficacy in CANDLE treatment.Objectives:We used proteomic analysis to compare differentially expressed proteins in active NOMID and CANDLE compared to healthy controls before and after treatment, and whole blood bulk RNA seq to identify the immune cell signatures.Methods:Serum samples from active NOMID (n=12) and CANDLE (n=7) before and after treatment (table 1) and age matched healthy controls (HC) (n=7) were profiled using the SomaLogic platform (n=1125 proteins). Differentially expressed proteins in NOMID and CANDLE were ranked after non-parametric tests for unpaired (NOMIDp<0.05, CANDLE,p<0.1) and paired (p<0.05) analysis and assessed by enriched Gene Ontology pathways and network visualization. Whole blood RNA seq was performed (NOMID=7, CANDLE=7, Controls =5) and RPKM values were used to assess immune cells signatures.Table 1.Patient’s characteristicsNOMIDN=12, Male =6CANDLEN=7, Male =6AgeMedian (range)12 (2, 28)16 (3, 20)Ethnicity%White (Hispanic)80 (20)100 (30)GeneticsNLRP3mutation(2 Somatic, 10 Germline)mutations in proteasome component genes(1 digenic, 6 Homozygous/compound Heterozygous)Before treatmentAfter treatmentBefore treatmentAfter treatmentCRPMedian (range) mg/L52 (16-110)5 (0-23)5 (0-101)1 (0-4)IFN scoremedian (range)0NA328 (211-1135)3 (0-548)Results:Compared to control, 205 proteins (127 upregulated, 78 downregulated) were significantly different at baseline in NOMID, compared to 163 proteins (101 upregulated, and 62 downregulated) in CANDLE. 134 dysregulated proteins (85 upregulated, 49 downregulated) overlapped in NOMID and CANDLE (Figure 1). Pathway analysis identified neutrophil and monocyte chemotaxis signature in both NOMID and CANDLE. NOMID patients had neutrophilia and active neutrophils. CANDLE patients exhibited active neutrophils in whole blood RNA. Endothelial cell activation was the most prominent non-hematopoietic signature and suggest distinct endothelial cell dysregulation in NOMID and CANDLE. In NOMID, the signature included neutrophil transmigration (SELE) endothelial cell motility in response to angiogenesis (HGF, VEGF), while in CANDLE the endothelial signatures included extracellular matrix protein deposition (COL8A) suggesting increased vascular stiffness. CANDLE patients had higher expression of Renin, 4 out of 7 had hypertension, NOMID patients did not have hypertension. Treatment with anakinra and baricitinib normalized 143 and 142 of dysregulated proteins in NOMID and CANDLE respectively.Conclusion:Differentially expressed proteins in NOMID and CANDLE are consistent with innate immune cell activation. Distinct endothelial cell signatures in NOMID and CANDLE may provide mechanistic insight into differences in vascular phenotypes. Treatment with anakinra and Baricitinib in NOMID and CANDLE leaves 30% and 13% of the dysregulated proteins unchanged.Acknowledgments:This work was supported by Intramural Research atNational Institute of Allergy Immunology and Infectious Diseases of National Institutes of Health, Bethesda, Maryland, the Center of Human Immunology and was approved by the IRB.Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document