scholarly journals Optimizing Sowing Date and Planting Density Can Mitigate the Impacts of Future Climate on Maize Yield: A Case Study in the Guanzhong Plain of China

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1452
Author(s):  
Fang Xu ◽  
Bin Wang ◽  
Chuan He ◽  
De Li Liu ◽  
Puyu Feng ◽  
...  

We used the APSIM-Maize model to simulate maize potential yield (Yp) and rain-fed yield (Yw) when adaptation options of sowing date and planting density were adopted under Representative Concentration Pathway (RCP) 4.5 and 8.5 in the Guanzhong Plain of China. The results showed that Yp would decrease by 10.6–14.9% and 15.0–31.4% under RCP4.5 and RCP8.5 for summer maize, and 13.9–19.7% and 18.5–36.3% for spring maize, respectively. The Yw would decrease by 17.1–19.0% and 23.6–41.1% under RCP4.5 and RCP8.5 for summer maize, and 20.9–24.5% and 27.8–45.5% for spring maize, respectively. The loss of Yp and Yw could be reduced by 2.6–9.7% and 0–9.9%, respectively, under future climate for summer maize through countermeasures. For spring maize, the loss of Yp was mitigated by 14.0–25.0% and 2.0–21.8% for Yw. The contribution of changing sowing date and plant density on spring maize yield was more than summer maize, and the optimal adaptation options were more effective for spring maize. Additionally, the influences of changing sowing date and planting density on yields become weak as climate changes become more severe. Therefore, it is important to investigate the potential of other adaptation measures to cope with climate change in the Guanzhong Plain of China.

2003 ◽  
Vol 51 (1) ◽  
pp. 25-35 ◽  
Author(s):  
A. Y. Allam ◽  
G. R. El-Nagar ◽  
A. H. Galal

This investigation was carried out at the Experimental Farm of Assiut University during the summers of 2000 and 2001 to study the responses of two sunflower hybrids (Vidoc and Euroflora) to planting dates (May 1st, June 1st and July 1st) and planting densities (55,533, 83,300 and 166,600 plants/ha). The results indicated that the two varieties differed highly significantly in all studied traits except oil yield/ha. The highest seed yield (3.64 t/ha) was obtained with the variety Vidoc. In addition, the results revealed that the planting date exerted a highly significant influence on all vegetative growth traits along with yield and its components. Increasing plant density increased the seed and oil yield/ha. By contrast, the stem diameter, head diameter, 100-seed weight and seed yield/plant decreased with increasing plant density. The interaction between varieties and plant density had a highly significant effect on head diameter. The greatest head diameter (20.06 cm) was recorded for the variety Vidoc planted at lower density. Concerning the interaction between planting density and planting date, the highest seed yield (4.47 t/ha) was obtained from dense plants at the early sowing date, and the highest oil % (45.32) at the late planting date and the lowest plant density. The second order interaction exerted a highly significant influence on stem and head diameter in addition to seed yield/plant, where the highest value (78.13 g/plant) was obtained with the variety Vidoc planted on May 1st at the lowest plant density.


2016 ◽  
Vol 155 (5) ◽  
pp. 703-724 ◽  
Author(s):  
A. MULUNEH ◽  
L. STROOSNIJDER ◽  
S. KEESSTRA ◽  
B. BIAZIN

SUMMARYStudies on climate impacts and related adaptation strategies are becoming increasingly important to counteract the negative impacts of climate change. In Ethiopia, climate change is likely to affect crop yields negatively and therefore food security. However, quantitative evidence is lacking about the ability of farm-level adaptation options to offset the negative impacts of climate change and to improve food security. The MarkSim Global Climate Model weather generator was used to generate projected daily rainfall and temperature data originally taken from the ECHAM5 general circulation model and ensemble mean of six models under high (A2) and low (B1) emission scenarios. The FAO AquaCrop model was validated and subsequently used to predict maize yields and explore three adaptation options: supplemental irrigation (SI), increasing plant density and changing sowing date. The maximum level of maize yield was obtained when the second level of supplemental irrigation (SI2), which is the application of irrigation water when the soil water depletion reached 75% of the total available water in the root zone, is combined with 30 000 plants/ha plant density. It was also found that SI has a marginal effect in good rainfall years but using 94–111 mm of SI can avoid total crop failure in drought years. Hence, SI is a promising option to bridge dry spells and improve food security in the Rift Valley dry lands of Ethiopia. Expected longer dry spells during the shorter rainy season (Belg) in the future are likely to further reduce maize yield. This predicted lower maize production is only partly compensated by the expected increase in CO2 concentration. However, shifting the sowing period of maize from the current Belg season (mostly April or May) to the first month of the longer rainy season (Kiremt) (June) can offset the predicted yield reduction. In general, the present study showed that climate change will occur and, without adaptation, will have negative effects. Use of SI and shifting sowing dates are viable options for adapting to the changes, stabilizing or increasing yield and therefore improving food security for the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Adnan Noor Shah ◽  
Mohsin Tanveer ◽  
Asad Abbas ◽  
Mehmet Yildirim ◽  
Anis Ali Shah ◽  
...  

High plant density is considered a proficient approach to increase maize production in countries with limited agricultural land; however, this creates a high risk of stem lodging and kernel abortion by reducing the ratio of biomass to the development of the stem and ear. Stem lodging and kernel abortion are major constraints in maize yield production for high plant density cropping; therefore, it is very important to overcome stem lodging and kernel abortion in maize. In this review, we discuss various morphophysiological and genetic characteristics of maize that may reduce the risk of stem lodging and kernel abortion, with a focus on carbohydrate metabolism and partitioning in maize. These characteristics illustrate a strong relationship between stem lodging resistance and kernel abortion. Previous studies have focused on targeting lignin and cellulose accumulation to improve lodging resistance. Nonetheless, a critical analysis of the literature showed that considering sugar metabolism and examining its effects on lodging resistance and kernel abortion in maize may provide considerable results to improve maize productivity. A constructive summary of management approaches that could be used to efficiently control the effects of stem lodging and kernel abortion is also included. The preferred management choice is based on the genotype of maize; nevertheless, various genetic and physiological approaches can control stem lodging and kernel abortion. However, plant growth regulators and nutrient application can also help reduce the risk for stem lodging and kernel abortion in maize.


2020 ◽  
Vol 63 (4) ◽  
pp. 789-797
Author(s):  
Hongzheng Shen ◽  
Fangping Xu ◽  
Rongheng Zhao ◽  
Xuguang Xing ◽  
Xiaoyi Ma

HighlightsGood applicability of DSSAT was validated in simulating summer maize yield in the Guanzhong Plain, China.Optimal sowing dates of summer maize were obtained for different climatic years.The optimal irrigation and nitrogen management strategy conserved water and nitrogen. Abstract. Agricultural system models play an important role in simulating crop growth processes and water and fertilizer regulation in arid regions. To solve the current problems of optimizing the sowing date in different climatic years and the fertilizer application in low-precipitation conditions in the Guanzhong Plain, China, this study used two years (2016-2017) of experimental summer maize field data to calibrate and validate Decision Support System for Agro-technology Transfer (DSSAT) model parameters. The validated DSSAT model was then used to simulate and optimize sowing dates, irrigation, and fertilization of summer maize crops in the Guanzhong Plain. The relative root-mean-square error (nRMSE) between the measured and simulated values of summer maize crop yield was 8.57%, proving that the established DSSAT model and crop parameters were highly reliable. The nRMSE values for soil water content and nitrate-nitrogen were 7.86% and 8.72%, respectively, which indicated better simulation results. The optimal sowing date for summer maize in the Guanzhong Plain were mid- to late June, mid-June, and early to mid-June in wet, general, and dry years, respectively. The irrigation and nitrogen strategies for summer maize in the climatic years were as follows: 60 mm and 180 kg ha-1 in wet years, 60 mm and 180 kg ha-1 in general years, and 150 mm and 150 kg ha-1 in dry years. This study provides a scientific decision-making method for the production of summer maize to conserve water and fertilizer. Keywords: . Climatic year, DSSAT, Guanzhong Plain, Sowing date, Summer maize.


2000 ◽  
Vol 40 (7) ◽  
pp. 975 ◽  
Author(s):  
S. N. Lisson ◽  
N. J. Mendham

This paper reports on a 3-year agronomic study into fibre hemp (Cannabis sativa L.) conducted in Tasmania, Australia. The performance of selected hemp cultivars, and the responses to sowing date and plant density were investigated as part of a broad feasibility study to assess the potential of fibre hemp and flax (Linum usitatissimum L.) as sources of fibre for the Australian newsprint industry. Trials were conducted at separate sites in north-west and south-east Tasmania. Nine cultivars from the Ukraine, Hungary and France were examined in 2 separate trials. The Hungarian cultivars, Kompolti and Unico B, and the French cultivar Futura 77 had the highest single plot dry stem yields (up to 1500 g/m 2 ) and bark proportions (up to 40%). All the cultivars flowered toward the end of January, suggesting that the growing season in Tasmania could accommodate much later flowering and potentially higher yielding genotypes. Levels of the psychoactive agent, delta-9-tetrahydrocannabinol were consistently below the legal maximum of 0.35% (dry weight basis). Three sowing date trials were conducted across 2 seasons incorporating dates between mid September and mid November and a single autumn planting at the end of May. Interactions with cultivar and planting density were also considered. Stem and bark yield declined with delays in sowing after early–mid October in response to a decline in calendar days and thermal time from sowing to flowering. The response was most pronounced in sowings of Kompolti, which flowered within a short period and differed more substantially in durations to flowering. Earlier sowings were limited by premature flowering in response to shorter daylengths and by poor drainage at one of the 2 trial sites. The success of early sowings in Tasmania would appear to depend on finding cultivars less sensitive tophotoperiod, and cultivation on well drained sites. A further trial was conducted to investigate the influence of plant density on hemp yields. Treatments included densities from 50 to 300 plants/m 2 . Plant density declined with crop growth across all treatments and was most pronounced for populations of 200 and 300 plants/m 2 . Final harvest stem yield responded in a parabolic manner to plant density, with maximum yields at about 110 plants/m 2 . Differences in the percentage of the long, high quality bark fibre at final harvest were generally small and not significant. However, regression analysis of the response of bark percentage suggested a linear decline with increasing initial density.


Author(s):  
Gustavo Castilho Beruski ◽  
Luis Miguel Schiebelbein ◽  
André Belmont Pereira

The potential yield of annual crops is affected by management practices and water and energy availabilities throughout the crop season. The current work aimed to assess the effects of plant population and soil covering on yield components of maize. Field experiments were carried out during 2014-15 and 2015-16 growing seasons at areas grown with oat straw, voluntary plants and bare soil, considering five different plant populations (40,000, 60,000, 80,000, 100,000 and 120,000 plants ha-1) and three sowing dates (15 Sep., 30 Oct., 15 Dec.) for the hybrid P30F53YH in Ponta Grossa, State of Parana, Brazil. Non-impacts of soil covering or plant population on plant height at the flowering phenological stage were observed. Significant effects of soil covering on crop physiological and yield components responses throughout the 2014-15 season were detected. Influence of plant populations on yield components was evidenced, suggesting that from 80,000 plants ha-1 the P30F53YH hybrid performs a compensatory effect among assessed yield components in such a way as to not compromise productivity insofar as plant population increases up to 120,000 plants ha-1. It was noticed a positive trend of yield components and crop final yield as a function of plant density increments.


2021 ◽  
Vol 25 (01) ◽  
pp. 43-51
Author(s):  
Qinglong Yang

To better understand the accumulation and transport of substances under different planting densities, the adaptation of maize root and leaf in response to increasing planting densities was investigated. In this two-year filed study, three maize varieties, Fumin108 (FM), Xianyu335 (XY) and Dika159 (DK), were sown under three different planting densities: 15,000 (D1), 60,000 (D2) and 90,000 plants ha-1 (D3) during 2018 and 2019. Increase in planting density gradually increased leaf area index along with reduced leaf area and net photosynthetic rate of individual leaves. In the 0–20 cm soil layer, the average root dry matter decreased by 55.88 and 80.92%, and the average root number decreased by 31.18 and 38.71% under D2 and D3, respectively, compared with D1. With increase in planting density, yield and dry matter per plant of maize gradually decreased while yield and dry matter per ha was increased with increase in D1-D2 density and then flattened in D2-D3 density. Compared with D1, two-year average yield per plant was decreased by 34.10 and 51.87% under D2 and D3, respectively. The difference in the number of roots of XY, FM and DK were not significant, so change in variety did not alleviate the decrease in the number of roots. At higher planting densities (above D2), the increase in density did not increase per ha grain yield. In conclusion, the suitable plant density was about 60,000 plants ha-1 to harvest more yield of spring maize while density higher than that reduced leaf area and photosynthesis per plant. Moreover, leaf area, root number and net photosynthesis per plant was higher in lower planting density coupled with overall less yield on ha basis and thus seemed wastage of soil nutrients and light resources. © 2021 Friends Science Publishers


2012 ◽  
Vol 40 (1) ◽  
pp. 183
Author(s):  
Hamid MADANI ◽  
Christos DORDAS ◽  
Ahad MADANI ◽  
Mohammad-Ali MOTASHAREI ◽  
Shima FARRI

Chicory is considered one of the alternatives crops that can be used in crop rotation and contains many phytochemicals that can be used in medicine. In addition, lengthening the growing season by early sowing may increase root chicory yield potential, and thus increase its competitiveness with traditional crops. The objectives of the present study were to determine whether early sowing date risks can be decreased by higher sowing density and also to study the effect of sowing date and sowing density on dry matter accumulation and partitioning of chicory. Growing season did not affect any of the characteristics that were studied. Also plant density affected the flowers biomass, root biomass per plant and the respective yield together with the plant height and essence yield and total yield. The sowing date affected the leaf, flower and stem biomass on a plant basis. However, the interaction between plant density and sowing date affected the total biomass per plant, the flower biomass per plant, the root biomass per plant, the flower yield, the root yield and the essence yield. These results indicate that for higher production it is important to determine the right plant density and sowing date which can affect growth, dry matter accumulation and essence yield.


2021 ◽  
Vol 911 (1) ◽  
pp. 012046
Author(s):  
Suwardi ◽  
Syafruddin ◽  
Muhammad Aqil ◽  
Roy Efendi ◽  
Z. Bunyamin

Abstract One of the strategies to increase maize production is by selecting the proper combination among variety and planting density. The plant density population experiment was carried out to identify the candidate of maize variety that has high productivity with limited sunlight levels. Our hypothesis was how the erect leaf maize type can get optimal sunlight and affect the productivity. The study was conducted in IP2TP Bajeng, Gowa, South Sulawesi from March to June 2020. This study was designed under split plot design where spacing or plant density as the main plot with 3 levels of treatment (70 cm x 20 cm (population 71,428 plants/ha), 60 cm x 20 cm (population 83,333 plants/ha) and 50 cm x 20 cm (population 100,000 plants/ha). Furthermore, eight genotypes of hybrid maize (ERC 01, ERC 02, ERC 03, ERC 04, ERC 05, ERC 06, ERC 07, ERC 08), including control varieties (JH 45 and Pioneer 36) were treated as the sub-plots. The results indicated that the maize yield increase in line with the increase in plant population. The plant’s spacing of 70 x 20 cm with 100,000 plants/ha was produced 10.61 t/ha, significantly higher than other treatments.


2018 ◽  
Vol 69 (2) ◽  
pp. 154 ◽  
Author(s):  
Rafael Battisti ◽  
Paulo C. Sentelhas ◽  
Phillip S. Parker ◽  
Claas Nendel ◽  
Gil M. De S. Câmara ◽  
...  

Management is the most important handle to improve crop yield and resilience under climate change. The aim of this study was to evaluate how irrigation, sowing date, cultivar maturity group and planting density can contribute for increasing the resilience of soybean (Glycine max (L.) Merr.) under future climate in southern Brazil. Five sites were selected to represent the range of Brazilian production systems typical for soybean cultivation. Yields were obtained from a crop-model ensemble (CROPGRO, APSIM and MONICA). Three climate scenarios were evaluated: baseline (1961–2014), and two future climate scenarios for the mid-century (2041–70) with low (+2.2°C, A1BLs) and high (+3.2°C, A1BHs) deltas for air temperature and with atmospheric [CO2] of 600 ppm. Supplementary irrigation resulted in higher and more stable yields, with gains in relation to a rainfed crop of 543, 719, 758 kg ha–1, respectively, for baseline, A1BLs and A1BHs. For sowing date, the tendencies were similar between climate scenarios, with higher yields when soybean was sown on 15 October for each simulated growing season. Cultivar maturity group 7.8 and a plant density of 50 plants m−2 resulted in higher yields in all climate scenarios. The best crop-management strategies showed similar tendency for all climate scenarios in Southern Brazil.


Sign in / Sign up

Export Citation Format

Share Document