Optimization of Sowing Date, Irrigation, and Nitrogen Management of Summer Maize Using the DSSAT-CERES-Maize Model in the Guanzhong Plain, China

2020 ◽  
Vol 63 (4) ◽  
pp. 789-797
Author(s):  
Hongzheng Shen ◽  
Fangping Xu ◽  
Rongheng Zhao ◽  
Xuguang Xing ◽  
Xiaoyi Ma

HighlightsGood applicability of DSSAT was validated in simulating summer maize yield in the Guanzhong Plain, China.Optimal sowing dates of summer maize were obtained for different climatic years.The optimal irrigation and nitrogen management strategy conserved water and nitrogen. Abstract. Agricultural system models play an important role in simulating crop growth processes and water and fertilizer regulation in arid regions. To solve the current problems of optimizing the sowing date in different climatic years and the fertilizer application in low-precipitation conditions in the Guanzhong Plain, China, this study used two years (2016-2017) of experimental summer maize field data to calibrate and validate Decision Support System for Agro-technology Transfer (DSSAT) model parameters. The validated DSSAT model was then used to simulate and optimize sowing dates, irrigation, and fertilization of summer maize crops in the Guanzhong Plain. The relative root-mean-square error (nRMSE) between the measured and simulated values of summer maize crop yield was 8.57%, proving that the established DSSAT model and crop parameters were highly reliable. The nRMSE values for soil water content and nitrate-nitrogen were 7.86% and 8.72%, respectively, which indicated better simulation results. The optimal sowing date for summer maize in the Guanzhong Plain were mid- to late June, mid-June, and early to mid-June in wet, general, and dry years, respectively. The irrigation and nitrogen strategies for summer maize in the climatic years were as follows: 60 mm and 180 kg ha-1 in wet years, 60 mm and 180 kg ha-1 in general years, and 150 mm and 150 kg ha-1 in dry years. This study provides a scientific decision-making method for the production of summer maize to conserve water and fertilizer. Keywords: . Climatic year, DSSAT, Guanzhong Plain, Sowing date, Summer maize.

Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 109 ◽  
Author(s):  
Qaisar Saddique ◽  
Huanjie Cai ◽  
Wajid Ishaque ◽  
Hui Chen ◽  
Henry Chau ◽  
...  

Summer maize (Zea mays L.) is a widely cultivated crop in the arid and semi-arid Guanzhong region of China. However, due to the spatial and temporal variation in rainfall, the seasonal maize yield varies substantially and occasionally is not economical for poor farmers to produce. Recent water-saving agricultural practices were developed by the government to make it possible to apply supplementary irrigation at optimum sowing dates to maximize maize production under limited rainfall in the region. CERES (Crop Estimation through Resource and Environment Synthesis)-maize model was used to identify the appropriate irrigation strategies, crop growth stages and sowing dates for sustainable maize production. Model calibration process were carried out for full irrigation treatments of four growing seasons, (2012–2015). The data used for calibration included: Crop phenology, grain yield, aboveground biomass and leaf area index. The calibration phase model showed good agreement between simulated and observed values, with normalized root mean square error (nRMSE) ranging from 4.51% to 14.5%. The performance of the calibrated model was evaluated using the field data of grain yield, aboveground biomass, leaf area index and water use efficiency. The performance of the model during evaluation was satisfactory with acceptable nRMSE error ranging from 7% to 10%. Soil moisture content was evaluated for full irrigation treatments for both 2012 and 2013 seasons. With results showing that soil moisture content below 35 cm layer was well simulated with nRMSE, 0.57 to 0.86 respectively. Appropriate simulated sowing dates for higher production and water productivity were from 14 to 24 June. The proper amount and timing of irrigation water application was 100 mm at the flowering stage, and 100 mm at the grain filling stage respectively. Summer maize yield can be improved by adjusting the sowing date and applying supplementary irrigation when precipitation cannot meet the crop water demand in the Guanzhong Plain.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1095 ◽  
Author(s):  
Hongzheng Shen ◽  
Yizheng Chen ◽  
Yongqiang Wang ◽  
Xuguang Xing ◽  
Xiaoyi Ma

Drought and uneven distribution of precipitation during stages of crop growth exert a severe reduction on crop yield. It is therefore necessary to evaluate the impact of drought on crop yields. In this study, data from a two-year (2016 and 2017) field experiment were used to calibrate and evaluate the parameters of the Decision Support System for the Agrotechnology Transfer (DSSAT) model. The evaluation model was then employed to analyze the impact of potential drought on the yield of summer maize (Zea mays L.) over different growth stages for 46 years (1970–2015). The simulated summer maize flowering and harvest date differed by three and one days of the observed in 2017. The d-index value and the normalized root-mean-square error (nRMSE) of the simulated and measured values were 0.90 and 3.72%, 0.95 and 10.21%, and 0.92 and 13.12%, for summer maize yield, soil water content, and leaf area index, respectively. This indicates that the parameters of the DSSAT model were extremely reliable and that the simulation results were better. The yield reduction of summer maize was concentrated within the range of 0–40% from 1970 to 2015, and the two-stage yield reduction was higher than the one-stage yield reduction. The highest probability of yield reduction occurs if drought occurs during jointing and heading stages. Irrigation is therefore recommended during jointing stage or heading stage. If local irrigation conditions permit, irrigation can be carried out both at the jointing and heading stages. This study provides a theoretical basis for drought resistance management and scientific irrigation of summer maize in the western Guanzhong plain.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 420
Author(s):  
Eric Owusu Danquah ◽  
Yacob Beletse ◽  
Richard Stirzaker ◽  
Christopher Smith ◽  
Stephen Yeboah ◽  
...  

Modelling and multiple linear regression were used to explore the reason for low maize yield in the Atebubu-Amantin and West Mamprusi Districts of Ghana, West Africa. The study evaluated maize yields on twenty farms against measures of soil fertility, agronomic attributes and soil water availability. Correlations between yield, soil fertility, rain, crop density, and weed biomass, were low, and no single factor could explain the low yields. A 50-year virtual experiment was then set up using the Agricultural Production Systems Simulator (APSIM) to explore the interactions between climate, crop management (sowing date and nitrogen fertilization) and rooting depth on grain yield and nitrate (NO3-N) dynamics. The analysis showed that a lack of optimal sowing dates that synchronize radiation, rainfall events and nitrogen (N) management with critical growth stages explained the low farm yields.


2014 ◽  
pp. 93-96
Author(s):  
Gergő Sedlák ◽  
Adrienn Széles

We carried out the tests in the flood meadow soil formed on the alluvial cone of Nagykereki, Sebes-Körös belonging to the Bihar plane small region. The aim of the study was to analyse the effect of the different sowing date of maize on the yield trend based on a comprehensive study conducted for 6 years (2007–2012). The sowing date of maize hybrids is a factor that significantly influences yield, however, its effect is not significant in each crop year. In the years when the date of sowing has a modifying effect, the reliable yield level can be reached with optimal sowing date management (24 April). The advantage of early sowing (10 April) proved to be dominant in the year of 2012, the seeds were placed into the still wet soil therefore shooting was more balanced. Maize seeds sown at the time of optimal (24 April) and late (10 May) sowing dates were placed into the already dry soil, which deteriorated germination and the strength of early initial development that had an effect on the yield.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1452
Author(s):  
Fang Xu ◽  
Bin Wang ◽  
Chuan He ◽  
De Li Liu ◽  
Puyu Feng ◽  
...  

We used the APSIM-Maize model to simulate maize potential yield (Yp) and rain-fed yield (Yw) when adaptation options of sowing date and planting density were adopted under Representative Concentration Pathway (RCP) 4.5 and 8.5 in the Guanzhong Plain of China. The results showed that Yp would decrease by 10.6–14.9% and 15.0–31.4% under RCP4.5 and RCP8.5 for summer maize, and 13.9–19.7% and 18.5–36.3% for spring maize, respectively. The Yw would decrease by 17.1–19.0% and 23.6–41.1% under RCP4.5 and RCP8.5 for summer maize, and 20.9–24.5% and 27.8–45.5% for spring maize, respectively. The loss of Yp and Yw could be reduced by 2.6–9.7% and 0–9.9%, respectively, under future climate for summer maize through countermeasures. For spring maize, the loss of Yp was mitigated by 14.0–25.0% and 2.0–21.8% for Yw. The contribution of changing sowing date and plant density on spring maize yield was more than summer maize, and the optimal adaptation options were more effective for spring maize. Additionally, the influences of changing sowing date and planting density on yields become weak as climate changes become more severe. Therefore, it is important to investigate the potential of other adaptation measures to cope with climate change in the Guanzhong Plain of China.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 198 ◽  
Author(s):  
Xuepeng Zhang ◽  
Jiali Cheng ◽  
Biao Wang ◽  
Peng Yan ◽  
Hongcui Dai ◽  
...  

The maize sole cropping system solves problems related to ground water resource shortages and guarantees food security in the North China Plain. Using optimal sowing dates is an effective management practice for increasing maize yield. The goal of this study was to explore an optimum sowing date for high-yield maize. Six sowing dates (SDs) from early April to late June with intervals of 10 to 20 days between SD—SD1 (early April), SD2 (mid to late April), SD3 (early May), SD4 (mid to late May), SD5 (early June), SD6 (late June)—were applied from 2012 to 2017. The results showed that yield was correlated with the sowing date based on the thermal time before sowing (r = 0.62**), which was defined as the pre-thermal time (PTt), and that the yield was steadily maintained at a high level (>10,500 kg ha−1) when PTt was greater than 479 °C. To satisfy the growing degree-days required for maturity, maize needs to be sown before a PTt of 750 °C. Data analysis of the results from 2014, 2015, and 2017 revealed the following: i) Most of the grain-filling parameters of late-sown dates (SD4, SD5 and SD6) were better than those in early-sown dates (SD1, SD2, and SD3) in all years, because of the high daily maximum temperature (Tmax) and wide diurnal temperature (Td) from silking to blister (R1–R2) of early-sown dates. The weight of maximum grain-filling rate (Wmax) of SD3 decreased compare with SD4 by the narrow Td from blister to physiological maturity (R2–R6) in all years (−5, −12, and −33 mg kernel−1 in 2014, 2015, and 2017, respectively). ii) In 2017, the pollination failure rates of early-sown dates were 8.4~14.5%, which was caused by the high Tmax and Td of R1–R2. The apical kernel abortion rates were 28.6 (SD2) and 38.7% (SD3), which were affected by Tmax and Td during R2–R6. iii) Compared with late-sown dates, the wide Td of early-sown dates in R1–R2 was caused by higher Tmax, but the narrow Td in R2-R6 was caused by higher Tmin. Our results indicate that high-yielding maize can be obtained by postponing the sowing date with a PTt of 480~750 °C, which can prevent the negative effects of the high Tmax of R1–R2 and high Tmin of R2–R6 on kernel number and weight formation. Moreover, these above-mentioned traits should be considered for heat tolerance breeding to further increase the maize yield.


2011 ◽  
Vol 59 (3) ◽  
pp. 191-200 ◽  
Author(s):  
Z. Berzsenyi ◽  
T. Árendás ◽  
P. Bónis ◽  
G. Micskei ◽  
E. Sugár

The effects of five crop production factors (tillage, fertilisation, plant density, variety, weed control) on the yield and yield stability of maize were examined in Martonvásár (HU) in a polyfactorial experiment and in separate long-term experiments on the effects of Nfertilisation, sowing date and plant density. In the polyfactorial experiment the five crop production factors contributed to the increase in maize yield in the following ratios (%): fertilisation 30.6, variety 32.6, plant density 20.2, weed control 14.2, soil cultivation 2.4. In the N fertilisation, sowing date and plant density experiments the effects of the treatments on the maize yield were examined separately for dry and wet years.Averaged over 40 years, the yields in the long-term N fertilisation experiment were 2.422 t ha−1 lower in the dry years than in the wet years (5.170 vs. 7.592 t ha−1). The optimum N rate was 160 kg ha−1. In the sowing date experiment the yield was 2.533 t ha−1 lower in the dry years than in the wet years (6.54 vs. 9.093 t ha−1), averaged over 19 years. In dry years the yield was highest for the early and optimum sowing dates, and in wet years for the optimum sowing date. Sowing at dates other than the optimum caused reductions in N fertiliser efficiency. Averaged over 22 years, the optimum plant density was 80,000 plants ha−1 in wet years and 50,000 plants ha−1 in dry years. The yield was most stable at a plant density of 60,000 plants ha−1. The clarification of year effects is particularly important in relation to the possible effects of climate change.


2014 ◽  
pp. 99-104
Author(s):  
Péter Ragán ◽  
Károly Bakó ◽  
Gergő Sedlák

Three Debrecen maize hybrids of different genotypes (Debreceni 285, Debreceni 377 and Debreceni 382) were examined on chernozem soil in a field experiment. During the two years of the experiment (2009–2010), we wanted to get to know how the examined hybrids reach to different sowing dates and what impact early, optimal and late sowing has on yield. In 2009, balanced soil and air temperature resulted in steady emergence. However, the low temperature in early April and the cooling down in mid-May 2010 caused a delayed emergence. The grain moisture content at harvesting and the high yield showed a strong crop year effect. In 2010, yield was much lower (1.664 t ha-1) and grain moisture was significantly higher (34%)than in 2009. In 2009, early sowing resulted in yield decrease (P<0.05), but it also significantly reduced grain moisture at harvesting (P<0.05). Although late sowing slightly increased yield (not significantly), but grain moisture at harvesting increased by 9.2%. In 2010, optimal sowing date was shown to be the best alternative from the aspect of yield, but there was no significant difference in comparison with early and late sowing. Grain moisture at harvesting greatly increased (13.3%). The Debreceni 382 maize hybrid reacted to sowing dates flexibly, neither early, nor late sowing affected its yield significantly and the grain moisture at harvesting showed 12% increase in the case of the late sowing date. In 2009, maize hybrids Debreceni 285 and Debreceni 377 reached their highest yield in the case of the sowing date which was shown to be optimal (23rd April), while the different sowing dates had no effect on yield in 2010.


2018 ◽  
Vol 17 (3) ◽  
pp. 408
Author(s):  
JOAO DANILO BARBIERI ◽  
RIVANILDO DALLACORT ◽  
RAFAEL CESAR TIEPPO ◽  
PAULO SÉRGIO LOURENÇO DE FREITAS ◽  
ADALBERTO SANTI

ABSTRACT - Understanding effects of climate variability over agricultural systems may support decisions to improve yield and environmental sustainability. Maize production systems in second season have a significant participation in Brazilian economy, and its yield depends of sowing times and soil water content. This work aimed to study maize yield in four sowing dates and supplementary irrigation in the second growing season in Brazil. The field experiment was developed in the 2015/2016 agricultural year in a completely randomized blocks design. Sowing dates were 01/27/2017, 02/09/2016, 02/25/2016 and 03/11/2016, and two irrigation conditions were adopted: the first without irrigation and the second with a supplementary irrigation of over 130% of the reference evapotranspiration (ET0). Yield performance indicated that the best result was obtained for the 01/27/2017 sowing date. The effects of supplementary irrigation affected the yield for the dates 02/25/2016 and 03/11/2016.Keywords: water balance, productivity, irrigation effect, Zea mays L.  POTENCIAL PRODUTIVO DO MILHO PARA ÉPOCAS DE SEMEADURA EM SEGUNDA SAFRA SUBMETIDO À IRRIGAÇÃO SUPLEMENTAR  RESUMO – O estudo dos efeitos da variabilidade climática na agricultura pode auxiliar nas tomadas de decisão para a melhoria contínua da produtividade e sustentabilidade ambiental. O milho de segunda safra no Brasil tem participação significativa na economia, e sua produtividade está vinculada, entre outros fatores, à pontualidade da semeadura e ao teor de água no solo. O objetivo deste estudo foi avaliar o efeito das épocas de semeadura em segunda safra no desempenho agronômico da cultura do milho em Tangará da Serra-MT, evidenciando a irrigação suplementar para semeaduras antecipadas, indicando a melhor época. O experimento foi realizado no ano agrícola de 2015/2016 com a cultivar de ciclo precoce AG 7088, em quatro épocas de semeadura (27/01/2016; 09/02/2016; 25/02/2016 e 11/03/2016), sob irrigação suplementar a 130% da evapotranspiração de referência (ET0) e sem irrigação, em delineamento experimental de blocos ao acaso com quatro repetições e parcelas de área útil de 7,2 m2. Foram avaliadas as características agronômicas para determinar o desempenho produtivo da cultura, em relação às épocas de semeadura em sistema irrigado e não irrigado. A semeadura realizada em 27/01 apresentou os melhores resultados de produtividade. A irrigação suplementar promoveu efeito sobre a produtividade nas épocas com restrição de chuvas (25/02/2016 e 11/03/2016).Palavras-chave: balanço hídrico, produtividade, efeito da irrigação, Zea mays L. 


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Mokhele Edmond Moeletsi

Temperature is one of the important environmental parameters that determines the development of a crop from one stage to another. It is integral in the calculation of heat units. In this study, the thermal index concept is used to determine the length of the growing period of short season, medium season, and medium-late season maize crop varieties for different sowing dates (1st dekad of October to 1st dekad of January). The results show high spatiotemporal variation in the median growing period for all three maize varieties. The length of the growing period for the short, medium, and medium-late season varieties is relatively short during October to early December with values in some areas of less than 100, 120, and 120 days, respectively. The duration of the planting period increases exponentially in most places starting from the 2nd dekad of November to 2nd dekad of December, depending on the region and crop variety. Long growing periods are likely to align maize growing period with dates of high frost risk and water shortages. Thus, appropriate choice of sowing date taking into consideration the thermal time requirements of the cultivar is crucial for proper growth and development of the maize crop.


Sign in / Sign up

Export Citation Format

Share Document