scholarly journals Licorice, Doum, and Banana Peel Extracts Inhibit Aspergillus flavus Growth and Suppress Metabolic Pathway of Aflatoxin B1 Production

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1587
Author(s):  
Nesrine H. Youssef ◽  
Sameer H. Qari ◽  
Saleh Matar ◽  
Najwa A. Hamad ◽  
Eldessoky S. Dessoky ◽  
...  

Three different concentrations of four (ethanol, acetone, methanol, and diethyl ether) extracts of licorice, doum, and banana peel were evaluated for antifungal and antimycotoxigenic efficiency against a maize aflatoxigenic fungus, Aspergillus flavus. Among them, the licorice diethyl ether 75% extract was intensely active, showing the best wet and dry weight inhibition and exhibiting the highest efficacy ratio (91%). Regarding aflatoxin B1 (AFB1) production, all the plant extracts tested were effective against AFB1 production after one month of maize storage, with average efficacy ratios ranging from 74.1% to 97.5%. At the same time, Thiram fungicide exhibited an efficacy ratio of 20.14%. The relative expression levels of three structural genes (aflD, aflP, and aflQ) and two regulatory genes (aflR and aflS) were significantly downregulated when compared to untreated maize grains or Thiram-treated maize grains. The doum diethyl ether 75% peel extract showed the highest total phenolic content (60.48 mg GAE/g dry extract wt.) and antioxidant activity (84.71 μg/mL). GC–MS analysis revealed that dimethoxycinnamic acid, aspartic acid, valproic acid, and linoleic acid might imbue the extracts with antioxidant capacities in relation to fungal growth and aflatoxin biosynthesis. Finally, the results suggest that the three plant extracts can be considered a promising source for developing potentially effective and environmentally safer alternative ways to control aflatoxin formation, thus creating a potentially protective method for grain storage.

Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 340
Author(s):  
Ixchel Campos-Avelar ◽  
Alexandre Colas de la Noue ◽  
Noël Durand ◽  
Guillaume Cazals ◽  
Véronique Martinez ◽  
...  

Aflatoxin B1 is a potent carcinogen produced by Aspergillus flavus, mainly during grain storage. As pre-harvest methods are insufficient to avoid mycotoxin presence during storage, diverse curative techniques are being investigated for the inhibition of fungal growth and aflatoxin detoxification. Streptomyces spp. represent an alternative as they are a promising source of detoxifying enzymes. Fifty-nine Streptomyces isolates and a Streptomyces griseoviridis strain from the commercial product Mycostop®, evaluated against Penicillium verrucosum and ochratoxin A during previous work, were screened for their ability to inhibit Aspergillus flavus growth and decrease the aflatoxin amount. The activities of bacterial cells and cell-free extracts (CFEs) from liquid cultures were also evaluated. Fifty-eight isolates were able to inhibit fungal growth during dual culture assays, with a maximal reduction going down to 13% of the control. Aflatoxin-specific production was decreased by all isolates to at least 54% of the control. CFEs were less effective in decreasing fungal growth (down to 40% and 55% for unheated and heated CFEs, respectively) and aflatoxin-specific production, with a few CFEs causing an overproduction of mycotoxins. Nearly all Streptomyces isolates were able to degrade AFB1 when growing in solid and liquid media. A total degradation of AFB1 was achieved by Mycostop® on solid medium, as well as an almost complete degradation by IX20 in liquid medium (6% of the control). CFE maximal degradation went down to 37% of the control for isolate IX09. The search for degradation by-products indicated the presence of a few unknown molecules. The evaluation of residual toxicity of the tested isolates by the SOS chromotest indicated a detoxification of at least 68% of AFB1’s genotoxicity.


2012 ◽  
Vol 9 (2) ◽  
pp. 45
Author(s):  
Arina Tri Lunggani

Aflatoxins are highly toxic secondary metabolies produced during the growth of several fungi, especiallyAspergillus flavus. AFB1 and AFB2 one of them which contaminates a wide variety of food and feed causing serioushealth problem when consumed by human or animals. This research was aimed to study the potency of Lactic AcidBacteria (LAB) in the inhibition of Aspergillus flavus growth and the production of Aflatoxin B2. Three species ofLAB i.e. Lactobacillus delbrueckii , L. fermentum, L. plantarum were investigated for their potential in inhibitingand degradation of Aflatoxin B2 as well as inhibiting fungal growth. The trial was designed into three variations ofeach isolate by challenging the fungal culture, before fungal inoculation, at the same time as fungal inoculation andafter fungal inoculation. It was found that all the three species of LAB are potential microorganism to inhibitfungal growth as indicated by the reduction of the dry weight of fungal mycelia compared with control.Quantification of Aflatoxin B2 showed that L. fermentum gave the strongest degradation of Aflatoxin B1 during 15days incubation, then followed by L. plantarum and L delbruekii with a reduction rate of 0,,2408 ppm, 0,3373 ppm,0,6393 ppm respectively, compared with control these are significantly different. These result conclude thatAflatoxin B2 can be degraded or prevented to be produced by A. flavus by applying LAB.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 391
Author(s):  
Christopher Hernandez ◽  
Laura Cadenillas ◽  
Anwar El Maghubi ◽  
Isaura Caceres ◽  
Vanessa Durrieu ◽  
...  

Aflatoxin B1 (AFB1) is a potent carcinogenic mycotoxin that contaminates numerous crops pre- and post-harvest. To protect foods and feeds from such toxins without resorting to pesticides, the use of plant extracts has been increasingly studied. The most interesting candidate plants are those with strong antioxidative activity because oxidation reactions may interfere with AFB1 production. The present study investigates how an aqueous extract of Mimosa tenuiflora bark affects both the growth of Aspergillus flavus and AFB1 production. The results reveal a dose-dependent inhibition of toxin synthesis with no impact on fungal growth. AFB1 inhibition is related to a down-modulation of the cluster genes of the biosynthetic pathway and especially to the two internal regulators aflR and aflS. Its strong anti-oxidative activity also allows the aqueous extract to modulate the expression of genes involved in fungal oxidative-stress response, such as msnA, mtfA, atfA, or sod1. Finally, a bio-guided fractionation of the aqueous extract demonstrates that condensed tannins play a major role in the anti-aflatoxin activity of Mimosa tenuiflora bark.


2006 ◽  
Vol 69 (10) ◽  
pp. 2544-2548 ◽  
Author(s):  
DANTE J. BUENO ◽  
JULIO O. SILVA ◽  
GUILLERMO OLIVER ◽  
SILVIA N. GONZÁLEZ

The effect of two species of lactobacilli, Lactobacillus casei CRL 431 and Lactobacillus rhamnosus CRL 1224, on growth of different Aspergillus flavus strains was determined. A. flavus strains (Ap, TR2,or CF80) were grown in LAPTg broth at 37°C for 7 days as a single culture and in association with L. casei CRL 431 or L. rhamnosus CRL 1224 at initial inoculum ratios of 1:1, 1:10, and 1:100. In most cases, the mixed cultures had a lower fungal growth and a lower pH than the control cultures. Mycelial dry weight was reduced to 73 and 85% using L. casei CRL 431 and L. rhamnosus CRL 1224, respectively. The pH decrease in mixed cultures when the fungal mycelial dry weight is reduced may play an important role in inhibition. The number of viable bacteria was variably affected by fungal growth. These results indicate that L. casei CRL 431 and L. rhamnosus CRL 1224 may be useful as potential biocontrol agent against A. flavus


2018 ◽  
Vol 15 (4) ◽  
pp. 899-908
Author(s):  
Khoirom Ratipiyari Devi ◽  
Paonam Priyobrata Singh ◽  
Moirangthem Medhapati Devi ◽  
Gurumayum Jitendra Sharma

Present research was designed to evaluate the free radical scavenging capacities and antioxidant activities of rhizome extracts of Alpinia galanga prepared in different solvent systems (60% aqueous methanol, 60% aqueous ethanol and distilled water) using different in vitro chemical assays. Antioxidant components such as total phenolic content (TPC), total flavonoid content (TFC) and ascorbic acid contents of the ginger species were screened. Antioxidant assays employed included sulphur free radical reactivity assay, ferric ion reducing power assay, DPPH free radical scavenging capacity assay, hydroxyl radical scavenging assay, nitric oxide scavenging activity assay and hydrogen peroxide scavenging assay. The obtained data reveal that the plant extracts contained significant amount of the observed antioxidant components and also exhibited significant free radical scavenging capacities. Methanol (60%) extract exhibited highest antioxidant activity than other solvents. The polyphenolic constituents of the plant extracts appear to be largely responsible for the radical scavenging capacity. The plant extracts act as promising source of antioxidants, and may be useful for development of nutraceuticals and pharmaceutical drugs.


1977 ◽  
Vol 60 (1) ◽  
pp. 96-99
Author(s):  
Jo Ann L Hilldrup ◽  
Thomas Eadie ◽  
Gerald C Llewellyn

Abstract Unprocessed honey, Lilium longiflorium pollen, brood comb, whole larvae, and whole bees were inoculated with Aspergillus flavus NRRL 3251, A. flavus ATCC 15548, and A. parasiticus NRRL 2999. The fungi grew, sporulated, and produced various amounts of aflatoxin on all substrates except the unprocessed honey. The largest quantity of aflatoxin B1 was produced on whole larvae supporting A. flavus NRRL 3251 growth. A. parasiticus NRRL 2999 growing on whole larvae produced the most aflatoxin G1. Aflatoxins B2 and G2 were seldom detected. Apiarian substrates with the exception of honey seem capable of supporting fungal growth and resultant aflatoxin production.


2015 ◽  
Vol 3 (3) ◽  
pp. 374-379 ◽  
Author(s):  
Neveen Helmy Abou El-Soud ◽  
Mohamed Deabes ◽  
Lamia Abou El-Kassem ◽  
Mona Khalil

BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents.AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production.MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and analysed using gas chromatography (GC) and GC coupled with mass spectrometry (GC/MS). The essential oil was tested for its effects on Aspergillus flavus (A. flavus) mycelial growth and aflatoxin B1 production in Yeast Extract Sucrose (YES) growth media. Aflatoxin B1 production was determined by high performance liquid chromatography (HPLC).RESULTS: Nineteen compounds, representing 96.7% of the total oil were identified. The main components were as follows: linalool (48.4%), 1,8-cineol (12.2%), eugenol (6.6%), methyl cinnamate (6.2%), α-cubebene (5.7%), caryophyllene (2.5%), β-ocimene (2.1%) and α-farnesene (2.0%).The tested oil showed significant antifungal activity that was dependent on the used oil concentration. The complete inhibition of A. flavus growth was observed at 1000 ppm oil concentration, while marked inhibition of aflatoxin B1 production was observed at all oil concentrations tested (500, 750 and 1000 ppm).CONCLUSION: These results confirm the antifungal activities of O. basilicum L. oil and its potential use to cure mycotic infections and act as pharmaceutical preservative against A. flavus growth and aflatoxin B1 production.


2014 ◽  
Vol 77 (10) ◽  
pp. 1760-1767 ◽  
Author(s):  
FATEN KACHOURI ◽  
HAMIDA KSONTINI ◽  
MOKTAR HAMDI

Olives can be contaminated with a wide variety of molds (Aspergillus and/or Penicillium) that can be occurring naturally on fresh and processed olives and could support mycotoxin production. The aim of this work was to investigate aflatoxin B1 (AFB1) production by fungi and its bioaccumulation in olives during storage and to study the impact of the application of Lactobacillus plantarum on the inhibition of mold development and production of AFB1. Two different treatments were applied: (i) olives with natural microflora and (ii) olives inoculated with Aspergillus flavus after elimination of natural microflora. AFB1 has been extracted from olives and quantitated by high-performance liquid chromatography using a fluorescence detector. Results showed the absence of this metabolite in the olives for the season 2008 to 2009. In 2009 to 2010, AFB1 was detected at the level of 11 μg/kg. The application of L. plantarum during the storage of olives favors the reduction of the level of AFB1 to 5.9 μg/kg correlated with a decrease in the amount of molds (86.3%). The images obtained by environmental scanning electron microscopy showed that L. plantarum was able to adhere to the olive surface and probably produce a biofilm that inhibits the multiplication of yeast and fungi by oxygen competition. Results showed an increase of antioxidant activity and amount of total phenolic compounds of olives, respectively, by 24 and 8.6%. In many olives contaminated with A. flavus, AFB1 was present at an initial level of 5.15 μg/kg and increased to 6.55 μg/kg after 8 days of storage. The biological detoxification of AFB1 in olives by L. plantarum is confirmed by the reduction of the level of AFB1 to 2.12 μg/kg on day 0 and its absence after 4 days of storage.


2021 ◽  
Vol 12 (2) ◽  
pp. 16
Author(s):  
Benigni Alfred Temba ◽  
Gaymary George Bakari

Occurrence of mycotoxins in foods poses a serious health concern all over the world. Aflatoxin B1 (AFB1) is the most toxic, with widest occurrence in various foods, but mainly in cereals and nuts and its accumulation depends on substrate and environmental factors. This study investigated the how physical status (milling) of maize kernels and atmospheric conditions (aeration, moisture and temperature) affect production of aflatoxin B1 by Aspergillus flavus (ATCC 28862). Intact kernels and flour were incubated for up to 20 days in open and partially sealed petri dishes under controlled temperatures of 25 ºC, 30 ºC and 37 ºC and initial moisture contents of 27%, 22%, 18%, 15% and 12%. It was found that on average, significantly higher (p < 0.05) aflatoxin B1 level was accumulated in intact kernels (145.7 µg/kg) as compared to milled kernels (2.2 µg/kg). Also, none of the samples incubated under partially sealed conditions, compared to up to 100% of the samples incubated in open atmosphere had detectable levels of aflatoxin B1 after 20 days. Fungal growth was not affected by milling or aeration, but sporulation was low at 37 ºC and high at 25 ºC and 30 ºC. The findings of this study provide baseline information on how conditions can be modified to control postharvest accumulation of aflatoxin B1 in cereals.


2018 ◽  
Vol 8 (9) ◽  
pp. 1655 ◽  
Author(s):  
Hyeong-Mi Kim ◽  
Hyunwoo Kwon ◽  
Kyeongsoon Kim ◽  
Sung-Eun Lee

Aspergillus flavus and A. parsiticus produce aflatoxins that are highly toxic to mammals and birds. In this study, the inhibitory effects of 1,8-cineole and t-cinnamaldehyde were examined on the growth of Aspergillus flavus ATCC 22546 and aflatoxin production. 1,8-Cineole showed 50% inhibition of fungal growth at a concentration of 250 ppm, while t-cinnamaldehyde almost completely inhibited fungal growth at a concentration of 50 ppm. Furthermore, no fungal growth was observed when the growth medium was treated with 100 ppm t-cinnamaldehyde. 1,8-Cineole also exhibited 50% inhibition on the production of aflatoxin B1 and aflatoxin B2 at a concentration of 100 ppm, while the addition of 100 ppm t-cinnamaldehyde completely inhibited aflatoxin production. These antiaflatoxigenic activities were related to a dramatic downregulation of the expression of aflE and aflL by 1,8-cineole, but the mode of action for t-cinnamaldehyde was unclear. Collectively, our results suggest that both of the compounds are promising alternatives to the currently used disinfectant, propionic acid, for food and feedstuff preservation.


Sign in / Sign up

Export Citation Format

Share Document