scholarly journals Assessment of the Current and Projected Conditions of Water Availability in the Sevastopol Region for Grape Growing

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1665
Author(s):  
Elena Vyshkvarkova ◽  
Evgeniy Rybalko ◽  
Olesia Marchukova ◽  
Natalia Baranova

Viticulture is a sector very sensitive to climate change. Observed and expected changes in temperature and precipitation can change the conditions necessary for viticulture in a particular area or make these conditions totally unsuitable for viticulture. Precipitation (water availability) and air temperature are the key meteorological parameters regulating the quality of grapes and wine. We used an ensemble of model data from the CMIP6 project to evaluate all possible changes in water availability in the area around Sevastopol by the middle and the end of the 21st century for two Shared Socioeconomic Pathway scenarios (SSP2-4.5 and SSP5-8.5). The hydrothermal coefficient and dryness index have been used to evaluate the water availability. The results have shown that, based on the indices values, viticulture in the study region will be possible without irrigation, but, at the same time, the vines may experience a certain level of dryness.

Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 142
Author(s):  
Quyet Manh Vu ◽  
Tri Dan Nguyen

This study aims to assess the potential development of selected agroforestry options for three provinces in the Northwest of Vietnam. Available spatial data including Land use/land cover maps and forest inventory maps were used as the base maps in combination with supplementary data and field survey to determine the potential agroforestry areas. Soil types, soil depth, soil texture, elevation, slope, temperature and rainfall were used to evaluate the biophysical suitability of ten typical agroforestry options in the study region. For assessing the impact of climate change to agroforestry suitability in the future, temperature and precipitation data extracted from two climate changes scenarios (Representative Concentration Pathway 4.5 and 8.5 in 2046–2065) were used. The results showed that the suitable areas for agroforestry development in Dien Bien, Sơn La and Yen Bai provinces were 267.74.01 ha, 405,597.96 ha; and 297,995.55 ha, respectively. Changes in temperature and precipitation by 2 climate change scenarios affected significantly to the suitability of Docynia indica + livestock grass, Teak + plum + coffee + grass and Plum + maize + livestock grass options. The map of agroforestry suitability can be served as a useful source in developing and expanding the area of agroforestry in the target provinces, and can be applied for other provinces in the same region in Vietnam.


2020 ◽  
Author(s):  
Claudia Teutsch ◽  
Faizan Anwar ◽  
Jochen Seidel ◽  
András Bárdossy ◽  
Christian Huggel ◽  
...  

<p>High mountain regions, like the Andes, face various risks due to climate change. In the Santa River catchment in Peru which includes the glaciated Cordillera Blanca, water availability is threatened by many climatic and non-climatic impacts. The water resources in the catchment heavily rely on seasonal precipitation and during the dry season glacier melt water plays an important role. However, both, precipitation patterns and glacier extent are affected by climate change impacts. Additionally, socio-economic changes put further pressure on water resources and hence on water availability.</p> <p>Within the AguaFuturo Project we established a conceptual integrated water balance model based on a semi-distributed HBV model for the data scarce Santa River catchment. The hydrological model processes are extended by feedback loops for agricultural and domestic water use. The model runs on daily time scale and includes two hydrological response units. One includes the irrigated agricultural areas which are predominately located in the valley of the catchment; the other includes non-irrigated areas and domestic water use.</p> <p>To assess future water balance challenges we downscaled and disaggregated monthly CORDEX scenarios for 2020-2050 using information from the new Peruvian precipitation dataset PISCO (Peruvian Interpolated data of the SENAMHI’s Climatological and hydrological Observations) for simulations of future changes in hydro-climatology. In the model, these climate scenarios are combined with possible socio-economic scenarios which are translated into time series for domestic and agricultural water demand. The socio-economic scenarios are developed by using the Cross-Impact-Balance-Analysis (CIB), a method used for analyzing impact networks. Using CIB, the interrelations between 15 social, economic and policy descriptors were analyzed and as a result a total of 29 possible consistent scenarios were determined. For further analysis and validation of these scenarios a participatory process was included, involving local experts and stakeholders of the study region.</p> <p>The climate and socio-economic scenarios are independent and can be combined randomly. The uncertainties of the climatic and socio-economic scenarios are quantified by Monte Carlo simulations.</p> <p>The output of the model runs is an ensemble of possible future discharges of the Santa River, which can be further analyzed statistically to assess the range of the possible discharges. This evaluation provides an estimate of the probability of water shortages, especially with regard to conflict potential with hydropower production and the large scale irrigated agriculture areas in the adjacent coastal desert which also rely on water from the Santa River.</p>


2015 ◽  
Vol 8 ◽  
pp. 496 ◽  
Author(s):  
Magna Soelma Beserra de Moura ◽  
Leide Dayane da Silva Oliveira ◽  
Sílvio Roberto Medeiros Evangelista ◽  
Maria Aparecida do Carmo Mouco ◽  
Luciana Sandra Bastos de Souza ◽  
...  

Este trabalho teve como objetivo analisar a aptidão climática para a cultura da manga para o clima atual e cenários futuros do IPCC (Painel Intergovernamental de Mudanças Climáticas) no Brasil. As condições climáticas ideais para a cultura da manga utilizados neste estudo foram padronizadas para o Brasil de acordo com documentos Zoneamento de Riscos Climáticos Agrícola. Para o zoneamento futuro da manga foram utilizados os dados de temperatura do ar e precipitação gerar por PRECIS e modelos ETA-CPTEC para os cenários de altas e baixas emissões de dióxido de carbono do IPCC (Painel Intergovernamental sobre Mudanças Climáticas), para as condições atuais (de base), 2025 e 2055. Foi utilizado sistema de informação geográfica para elaborar os mapas e tabelas. Os resultados indicam que pode haver reduções nas áreas apropriadas para o cultivo de manga no Brasil, considerando-se os modelos climáticos gerados pelo ETA e PRECIS. Assim, o manejo da cultura da manga deve ser adaptado para tornar possível obter produção satisfatória em cenários de baixa disponibilidade hídrica e aumento da temperatura. This work aimed to analyze the climatic aptitude for mango crop to the current climate and future IPCC (Intergovernmental Panel on Climate Change) scenarios in Brazil. The optimal climatic conditions for mango crop used in this study were standardized for Brazil according to Agricultural Zoning Climate Risk documents. For the future mango zoning was used the data of air temperature and precipitation generate by PRECIS and ETA-CPTEC models in concern to scenarios of high and low emissions of carbon dioxide of IPCC (Intergovernmental Panel on Climate Change), for current conditions (Baseline), 2025 and 2055. It was used geographic information systems to elaborate the maps and tables. The results indicate that there may be reductions in the areas suitable for the cultivation of mango in Brazil, considering the climate models generated by ETA and PRECIS. Thus, the mango crop management should be adapted to make possible obtain satisfactory production under scenarios of lower water availability and increased temperature. Keywords: Mangifera indica L., climate change, agroclimatic zoning.   


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Hassan NA ◽  
Hashim JH ◽  
Wan Puteh SE ◽  
Wan Mahiyuddin WR ◽  
Faisal MS

Introduction: Altered weather patterns and changes in precipitation, temperature and humidity resulting from climate change could affect the distribution and incidence of cholera. This study is to quantify climate-induced increase in morbidity rates of cholera. Material and Methods: Monthly cholera cases and monthly temperature, precipitation, and relative humidity data from 2004 to 2014 were obtained from the Malaysian Ministry of Health and Malaysian Meteorological Department, respectively. Poisson generalized linear models were developed to quantify the relationship between meteorological parameters and the number of reported cholera cases. Results: The findings revealed that the total number of cholera cases in Malaysia during the 11 year study period was 3841 cases with 32 deaths. Out of these, 45.1% of the cases were among children below 12 years old and 75% of the cases were from Sabah. Temperature and precipitation gave significant impact on the cholera cases in Sabah, (p<0.001) while precipitation were significant in Terengganu (p<0.001), and Sarawak (p=0.013). Monthly lag temperature data at Lag 0, 1, and 2 months were associated with the cholera cases in Sabah (p<0.001). The change in odds of having cholera cases were by the factor of 3.5 for every 1ºC increase in temperature. However, the contribution of rainfall was very mild, whereby an increase of 1 mm in precipitation will increase the excess risk of cholera by up to 0.8%. Conclusion: This study concludes that climate does influence the number of cholera cases in Malaysia.


Author(s):  
D. N. Khoi ◽  
V. T. Nguyen ◽  
T. T. Sam ◽  
N. T. H. Mai ◽  
N. D. Vuong ◽  
...  

Abstract On a global scale, climate change is projected to have detrimental impacts on water availability. This situation will become more severe owing to accumulated impacts of climate change and anthropogenic activities. This study aims to investigate climate change impact on water availability in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) and Water Evaluation and Planning (WEAP) models. Future rainfall scenarios were downscaled from five different general circulation models under RCP4.5 and RCP8.5 using the Long Ashton Research Station Weather Generator (LARS-WG) tool. Under the climate change impact, annual river discharge in the study region is generally projected to have upward trends in the future, except for the near-future period of 2030s under RCP4.5. In addition, dry-seasonal river discharge is expected to be increased in the future. Considering the baseline condition of water use, there was an annual water shortage of approximately 32.9 × 103 m3, which mostly occurred in the dry season from January to March. Climate change may reduce the water shortage in the study region ranging from 7.0 to 30.1% in the future. Under the combined impacts of climate change and increasing water demand, the water shortage will vary from −18.6 to 6.0% in the future. The results can provide valuable insights to implement appropriate future water resources planning and management in the study region.


2020 ◽  
Author(s):  
Adrian Huerta ◽  
Waldo Lavado ◽  
Pedro Rau

&lt;p&gt;This study provides for the-first-time a water availability analysis at drainage and basin-scale in Peru. Using new gridded datasets of precipitation and temperature, along with six global actual evapotranspiration estimations from remote sensing products, the vulnerability of water resources due to climate change is evaluated. This is addressed under a bottom-up approach and probabilistic Budyko framework that enables us to measure the associated uncertainty. First, to select an adequate estimation of long-term actual evapotranspiration, we compared at basin-scale the remote sensing products with long-term actual evapotranspiration inferred from a water-balance (precipitation minus discharge) and deterministic Budyko (aridity and evaporative index relationship). Later, the probabilistic Budyko is calibrated using the adequated remote-sensed actual evapotranspiration and is cross-validated at country, drainage, and basin-scale. Finally, the water availability vulnerability (measured as the relative change of precipitation minus actual evapotranspiration from historical estimates) and associated uncertainty is computed from the probabilistic Budyko along with climate spaces from variations of potential evapotranspiration (from temperature) and precipitation. The main results show that GLEAM, MEAN, and TerraClimate are the highest-ranked products in terms of estimation of long-term mean actual evapotranspiration across basins with low bias, RMSE, and high R. GLEAM and MEAN present lower bias and RMSE, and TerraClimate estimate very well the spatial distribution of actual evapotranspiration (highest-ranked R). On the contrary, Zhang, MODIS16, and SSEBop are less efficient based on most criteria evaluation. Therefore, as reference for actual evapotranspiration, we select MEAN which represents the linear averaging of remotely sensed products. From this perspective, we expect to minimize the negative bias and preserve the spatial resolution from individual actual evapotranspiration products. Achieved the three main long-term variables, we calibrate and cross-validate the probabilistic Budyko in terms of the evaporative index. The evidence suggests that the regional distribution of the Budyko parameter accomplishes errors of +-2% at the country and drainage-scale and +-9% as average at basin-scale. Thus, the probabilistic Budyko framework provides great performance. Based on this evaluation, we figure out that basins located in the Andes, especially in the southern, showed lower critical precipitation change (less than 10%) to increase the vulnerability of water availability by 25%.&lt;/p&gt;&lt;p&gt;This research is part of the multidisciplinary collaboration between British and Peruvian scientists (NERC, COCYTEC).&lt;/p&gt;


Author(s):  
A.V. Konstantinovich ◽  
◽  
A.S. Kuracheva ◽  
E.D. Binkevich

In conditions of climate change, when temperature and precipitation fluctuations occur more and more frequently during the growing season, it is necessary to obtain high quality seedlings with "immunity" to various stress factors, including high weediness, the damage from which is associated with a decrease in yield (by 25 -35%) and with a deterioration in the quality of agricultural products. Due to the imbalance in production technology, seedlings are often weakened, overgrown, with a low yield per unit area and survival rate in the field. One of the solutions to this problem is the use of PP for pre-sowing seed treatment to increase the competitiveness of seedlings in the field.


2012 ◽  
Vol 3 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Vivek Shandas ◽  
Meenakshi Rao ◽  
Moriah McSharry McGrath

Social and behavioral research is crucial for securing environmental sustainability and improving human living environments. Although the majority of people now live in urban areas, we have limited empirical evidence of the anticipated behavioral response to climate change. Using empirical data on daily household residential water use and temperature, our research examines the implications of future climate conditions on water conservation behavior in 501 households within the Portland (OR) metropolitan region. We ask whether and how much change in ambient temperatures impact residential household water use, while controlling for taxlot characteristics. Based on our results, we develop a spatially explicit description about the changes in future water use for the study region using a downscaled future climate scenario. The results suggest that behavioral responses are mediated by an interaction of household structural attributes, and magnitude and temporal variability of weather parameters. These findings have implications for the way natural resource managers and planning bureaus prepare for and adapt to future consequences of climate change.


Sign in / Sign up

Export Citation Format

Share Document