scholarly journals Biochemical and Physiological Responses of Thermostable Wheat Genotypes for Agronomic Yield under Heat Stress during Reproductive Stages

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2080
Author(s):  
Fahad Alghabari ◽  
Zahid Hussain Shah ◽  
Abdalla Ahmed Elfeel ◽  
Jaber Hussain Alyami

Wheat is a globally important crop used as a main staple food in various countries of the world. The current study was conducted with the objective to evaluate the effect of a high temperature (HT) on osmolytes (starch, sucrose, total soluble sugars, total soluble proteins and proline), physiological parameters (Chl-a, Chl-b, photosynthesis rate, transpiration rate and stomatal conductance), antioxidant enzymes (superoxide dismutase, catalase and peroxidase) and agronomic traits (flag leaf area, spike length, and thousand grain weight) during the grain filling and anthesis stages of wheat cultivars (Fakhr-e-Bhakar, Raj-3765, Jimai-22 and Bayraktar-2000) collected from different regions of the world. Separate experiments for both stages were conducted in a glasshouse and treated with two different temperature regimes, i.e., optimum (OT) (24 °C day; 14 °C night) and high temperature (HT) (32 °C day; 22 °C night) in RCBD for two weeks. The data for osmolytes, antioxidant enzymes and physiological contents were collected at days 3, 5, 7, 9 and 13 after the start of plant stress, while the agronomic traits were collected at maturity. The data obtained were subjected to a statistical analysis using the statistix8.1 and R-program. HT stress significantly reduced all the traits except for the membrane damage, transpiration rate, proline and total soluble sugars, whose values increased considerably in the genotype Bayraktar-2000. However, under both regimes of temperature Fakhr-e-Bhakkar showed a high tolerance against HT stress, as revealed by physiological, biochemical and agronomic evaluations. Moreover, correlation, PCA and heat map analyses indicated that all types of traits are significantly interconnected in determining the crop potential to sustain its growth under HT stress.

2016 ◽  
Vol 96 (3) ◽  
pp. 474-484 ◽  
Author(s):  
Yan-Qing Wu ◽  
Da-Qiu Zhao ◽  
Chen-Xia Han ◽  
Jun Tao

To clarify the theoretical basis of the differences in high temperature stress tolerance among herbaceous peony (Paeonia lactiflora Pall.), we investigated the heat injury index of twelve P. lactiflora cultivars. Of these, heat-tolerant ‘Zifengyu’ and moderately heat-tolerant ‘Hongyanzhenghui’ were selected to study the biochemical and molecular responses to high temperature stress. ‘Zifengyu’ had reduced malondialdehyde (MDA) content, increased soluble sugar, chlorophyll (Chl) a, Chl b, Chl a + b. and carotenoid contents, as well as elevated antioxidant enzymes activities, photosynthetic rate (Pn), transpiration rate (Tr) and relatively intact cellular structures compared with ‘Hongyanzhenghui’, especially when the temperature was the highest. Additionally, we isolated partial cDNAs of two heat shock protein genes (HSP60 and HSP90) from P. lactiflora, which were 880-bp and 1077-bp nucleotides in length, respectively. The expression levels of PlHSP60, PlHSP70 and PlHSP90 were lower in ‘Zifengyu’ than in ‘Hongyanzhenghui’ for the first three of four developmental stages examined. These results indicated that heat-tolerant P. lactiflora cultivar could effectively scavenge reactive oxygen species (ROS), protect cellular structures, reduce thermal damage and delay the death of plants by enhancing antioxidant enzymes activities and HSP expression under high temperature stress. These findings provide a theoretical basis for breeding heat-tolerant P. lactiflora cultivars.


2016 ◽  
Vol 8 (1) ◽  
pp. 225-231
Author(s):  
Navkiran Randhawa ◽  
Jagmeet Kaur ◽  
Satvir Kaur ◽  
Sarvjeet Singh

The present investigation was aimed to study influence of moisture stress in in vitro identified tolerant (GL28151, RSG963, PDG3) and sensitive (GL22044, GNG1861, PBG1) chickpea genotypes under field conditions. Moisture stress treatments included crop sown with one pre-sowing irrigation (WSVFP), irrigation withheld at flower initiation stage (WSF), irrigation withheld at pod initiation stage (WSP) and control (irrigated as and when required). Osmolytes (in seeds) viz. total soluble sugars, starch, proline, cellular functions; relative water content, membrane permeability index and lipid peroxidation (in leaves), antioxidant enzymes (at pod filling stage) viz. peroxidase, catalase, superoxide dismutase, glutathione reductase were estimated in chickpea seeds under control and stressed conditions. WSVFP was most severely affected by moisture stress followed by WSP and WSF and emphasized on pod intuition stage as critical stage attributable to hindered transport of assimilates towards formation of pods and development of seeds under stress imposed by lack of sufficient moisture. Highest accumulation of total soluble sugars (73.33), starch (73.12), proline (2.04) in mg/g fresh weight, least percentage reduction over control in relative water content (20.3), membrane permeability index (18.8) and minimal lipid peroxidation (31.3) accompanied by significantly enhanced activities of antioxidant enzymes under WSVFP rendered moisture stress tolerance in RSG963. The pronounced cellular damage, lesser alleviation in the content of osmolytes, antioxidant enzymes activity was observed in sensitive genotype GL22044 under stress treatments. High molecular weight protein bands were found either absent or of low intensity in sensitive genotypes (GL22044, GNG1861 and PBG1) under severe stress treatment (WSVFP).


2016 ◽  
Vol 8 (3) ◽  
pp. 1133-1137 ◽  
Author(s):  
Navita Ghai ◽  
Jaspreet Kaur ◽  
S K Jindal ◽  
M.S. Dhaliwal ◽  
Kanchan Pahwa

The present study was conducted to evaluate the physiological and biochemical changes in some thermotolerant and thermosensitive chilli (Capsicum annuum L.) genotypes. Fourteen chilli genotypes (SL 461, PP 404, DL 161, MS 341, VR 521, PB 405, PS 403, SD 463, FL 201, AC 102, S 343, SL 462 and SL 464 along with sensitive check [Royal Wonder of bell pepper] were evaluated for heat tolerance. The observations on morpho-physiological and biochemical parameters were recorded at 45, 65, 85 and 105 days after transplanting (DAT) (high temperature period). On the basis of our studies, genotypes S 343, AC 102 and FL 201 were found to be relatively thermotolerant. However, high temperature markedly decreased the photosynthetic activity of chilli plants by decreasing the photosynthetic pigments in leaf chloroplasts of all the genotypes. The levels of ascorbic acid, total soluble sugars and total phenols increased in the leaves of all the genotypes with the maturity of the crop. Electrolyte leakage and proline content also increased with rise in temperature. Genotypes AC 102 and S 343 were able to accumulate the maximum ascorbic acid, proline, total soluble sugars and total phenols under heat stress conditions. Decrease in fruit set percent led to reduction in the total yield per plant. Maximum yield was observed in genotype S 343 followed by FL 201.


2020 ◽  
Vol 42 ◽  
pp. e42476
Author(s):  
Camila Segalla Prazeres ◽  
Cileide Maria Medeiros Coelho

The objective of this work was to evaluate the alterations of antioxidant enzyme reserves and antioxidant enzymes during germination under water deficit in maize hybrids and to associate with seed vigor, determining the mechanisms related to tolerance for this stress. Two three-way maize hybrids were characterized by their vigor at different levels of water deficit induced by polyethylene glycol 6000. Next, the seeds were hydrated at different osmotic potentials (0.0, -0.3, and -0.9 MPa) and removed at different times to assess the levels of the total soluble protein, total soluble sugars, proline, starch, and antioxidant enzymes, such as superoxide dismutase, catalase and ascorbate peroxidase. The analysis of variance, Tukey test at 5% and principal component analysis (PCA) were used. The vigorous hybrid (HT1) was more efficient than the low vigor hybrid seeds (HT2) in mobilizing the total soluble protein during the initial stages of germination and the total soluble sugars before and after root protrusion under water deficit in addition to increasing the catalase activity at the different osmotic potentials that were assessed.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Jun Li ◽  
Yan Li ◽  
Ligeng Ma

AbstractCommon wheat (Triticum aestivum L.) is one of the three major food crops in the world; thus, wheat breeding programs are important for world food security. Characterizing the genes that control important agronomic traits and finding new ways to alter them are necessary to improve wheat breeding. Functional genomics and breeding in polyploid wheat has been greatly accelerated by the advent of several powerful tools, especially CRISPR/Cas9 genome editing technology, which allows multiplex genome engineering. Here, we describe the development of CRISPR/Cas9, which has revolutionized the field of genome editing. In addition, we emphasize technological breakthroughs (e.g., base editing and prime editing) based on CRISPR/Cas9. We also summarize recent applications and advances in the functional annotation and breeding of wheat, and we introduce the production of CRISPR-edited DNA-free wheat. Combined with other achievements, CRISPR and CRISPR-based genome editing will speed progress in wheat biology and promote sustainable agriculture.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Ragab S. Taha ◽  
Mahmoud F. Seleiman ◽  
Bushra Ahmed Alhammad ◽  
Jawaher Alkahtani ◽  
Mona S. Alwahibi ◽  
...  

Salinity is one of the most severe environmental stresses that negatively limits anatomical structure, growth and the physiological and productivity traits of field crops. The productivity of lupine plants is severely restricted by abiotic stress, particularly, salinity in arid and semiarid regions. Activated yeast extract (AYE) can perform a vital role in the tolerance of environmental stress, as it contains phytohormones and amino acids. Thus, field experiments were conducted to explore the potential function of active yeast extract (0, 50, 75, and 100 mL AYE L−1) in mitigating the harmful impacts of salinity stress (EC = 7.65 dS m−1) on anatomical structure, growth, and the physiological and productivity traits of two lupine cultivars: Giza 1 and Giza 2. The different AYE treatments resulted in a substantial improvement in studied attributes, for example the growth, anatomical, physiological characteristics, and seed yields of treated lupine cultivars compared with untreated plants. Among the AYE doses, 75 mL L−1 significantly improved plant growth, leaf photosynthetic pigments, total soluble sugars, total protein, and seed yields, and exposed the best anatomical attributes of the two lupine cultivars grown under saline stress. The exogenous application of 75 mL AYE L−1 was the most influential, and it surpassed the control results by 45.9% for 100-seed weight and 26.9% for seed yield per hectare. On the other hand, at a concentration of 75 mL L−1 AYE there was a decrease in the alkaloids and endogenous proline under the studied salinity stress conditions. Promoted salinity stress tolerance through sufficient AYE dose is a hopeful strategy to enhance the tolerance and improve productivity of lupine into salinity stress. Furthermore, the response of lupine to salinity stress appears to rely on AYE dose. The results proved that Giza 2 was more responsive to AYE than Giza 1, showing a better growth and higher yield, and reflecting further salinity tolerance than the Giza 1 cultivar.


2011 ◽  
Vol 168 (6) ◽  
pp. 585-593 ◽  
Author(s):  
Xiao Wang ◽  
Jian Cai ◽  
Dong Jiang ◽  
Fulai Liu ◽  
Tingbo Dai ◽  
...  

2021 ◽  
Author(s):  
Mengxia Li ◽  
Xiaopeng Deng ◽  
Ke Ren ◽  
Rui Liu ◽  
Tao Wang ◽  
...  

Abstract Boron (B) is a micronutrient tobacco needs in minute amounts, and Boron insufficient supply can causes significant tobacco yield loss, however, the appropriate concentration for flue-cured tobacco seedlings to growth remains unknown. In this sense, a hydroponic experiment was conduct to measure the agronomic traits, dry matter mass, chlorophyll content, photosynthetic performance, antioxidant enzymes, boron ion and nicotine content of flue-cured tobacco seedlings K326 under different boron concentrations of 0.000mmol/L (B1, CK), 0.125mmol/L (B2), 0.250mmol/L (B3), 0.750mmol/L (B4), 5.000mmol/L (B5), 10.000mmol/L (B6), 20.000mmol/L (B7), 40.000mmol/L (B8) after 30 days. B significantly influenced flue-tobacco seedlings growth on agronomic traits, photosynthetic performance, the activities of antioxidant enzymes, boron ion and nicotine content aspects. B linearly enhanced the accumulation of boron ion by 24.00%~96.44%, and decreased nicotine content by 21.60%~82.03% in tobacco seedlings. Solution B concentration at 0.750 and 5.000mmol/L markedly improved tobacco seedlings maximum leaf length by 4.83%~82.03% and leaf width by 0.77%~24.36%, root weight by 13.64%~56.82%, stem weight by 12.26%~52.36%, leaf weight by 9.68%~36.56%, dry matter mass by 10.65%~38.92%, the Pn parameter by 1.22%~80.28%, the Cond paramete by 33.40%~75.86%, while decreased the activities of SOD by 10.44%~91.67%, POD by 21.32%~65.62% and CAT by 50.05%~96.44%, and MDA by 16.23%~75.16%. The B concentration concluded in this study enhanced the agronomy traits, photosynthetic and biochemical characteristics of flue-cured tobacco seedlings, which lays a scientific theoretical foundation for rational application of B in tobacco production and improve the internal quality of flue-cured tobacco.


Sign in / Sign up

Export Citation Format

Share Document