scholarly journals Optimization of Growing Medium and Preservation Methods for Plant Beneficial Bacteria, and Formulating a Microbial Biopreparation for Raspberry Naturalization

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2521
Author(s):  
Michał Pylak ◽  
Karolina Oszust ◽  
Magdalena Frąc

The current study focuses on the optimization of bacterial growing medium composition, including the carbon and nitrogen source in different concentrations, the pH value of the medium and the temperature. Optimization was performed for four environmental bacterial isolates belonging to the genera Arthrobacter, Pseudomonas and Rhodococcus, which were previously obtained from wild raspberries. These bacteria proved to be potent antagonists against certain fungal and fungal-like plant pathogens. Furthermore, three preservation methods and three sample preparation techniques were evaluated. In addition, a prebiotic supplementary blend based on previous research was tested. The research included a pot experiment to estimate the influence of bacterial cultures on the growth of plant shoots and roots, on the soil enzymatic activity and the content of macronutrients, minerals and nitrogen in the soil depending on the naturalization strategy. The best carbon and nitrogen source were chosen. The addition of a supplementary blend resulted in the increased growth of two bacterial isolates. Bacterial inoculum applied to the roots and watering resulted in increased shoot mass in objects infected with plant pathogens, although in plants without the pathogen infection, bacterial inoculum resulted in the decreased mass of plants. Naturalization strategy should be matched to the pathogens present at plantations.

2017 ◽  
Vol 4 (1) ◽  
pp. 10
Author(s):  
Erwahyuni Prabandari ◽  
Dyah Noor Hidayati ◽  
Diana Dewi ◽  
Eni Dwi Islamiati ◽  
Khaswar Syamsu

Cephalosporin is a β-lactam antibiotic produced by Acremonium chrysogenum using submerged fermentation. Carbon and nitrogen are the most influential medium ingredients for cephalosporin formation. The purpose of this study was to obtain the best composition of media for cephalosporin C production. Response surface methodology was used for production optimization. The results showed that molasses of 70 g/Lwas the best carbon source, while the best nitrogen source was the combination of corn steep liquor, urea and ammonium sulphate. DL-methionine, carbon, and nitrogen source significantly affected  the production of cephalosporin C. The mathematically modelled optimization showed that the highest production of cephalosporin C (3876 mg/L) was obtained using medium composition of 68.28 g/L molasses, 71.61 g/L nitrogen, and 0.4 g/L DL-methionine. Laboratory verification using the same medium composition produced 3696 mg/L of cephalosporin C, being 4.65% different from the mathematically optimized results. Medium optimization increased the cephalosprin C production which was 1.48 times higher than that using the previous medium, where the maximum production was only 2487 mg / L.Keywords: Carbon,  cephalosporin C, cultivation medium, nitrogen, A. chrysogenum ABSTRAKSefalosporin C adalah golongan antibiotik β-lactam yang dihasilkan Acremonium chrysogenum melalui fermentasi cair. Komponen yang sangat berpengaruh terhadap produksi sefalosporin C adalah sumber karbon dan nitrogen. Penelitian ini bertujuan mendapatkan komposisi media terbaik untuk produksi sefalosporin C. Optimasi dilakukan menggunakan metode respon permukaan. Hasil menunjukkan bahwa molases 70 g/L adalah sumber karbon terbaik dan kombinasi corn steep liquor, urea dan ammonium sulfat adalah sumber nitrogen terbaik. DL-methionin, sumber karbon, dan nitrogen berpengaruh nyata terhadap produksi sefalosporin C. Optimasi menggunakan model matematika menunjukkan produksi sefalosporin C tertinggi (3876 mg/L) yang diperoleh dengan komposisi media 68,28 g/L molases, 71,61 g/L nitrogen, dan  0,4 g/L DL-methionin. Verfikasi di laboratorium menggunakan komposisi media yang sama menghasilkan sefalosporin C sebesar 3696 mg/L, berbeda 4,65% dibanding dengan hasil optimasi matematis. Optimasi media mampu meningkatkan produksi sefalosprin C sebesar 1,48 kali dibanding media yang digunakan sebelumnya, dimana maksimal hanya menghasilkan 2487 mg/L.Kata kunci: Karbon, sefalosporin C, media kultivasi, nitrogen, A. chrysogenum


Weed Science ◽  
1975 ◽  
Vol 23 (1) ◽  
pp. 71-74 ◽  
Author(s):  
G. E. Carter ◽  
N. D. Camper

Soil enrichment studies were conducted with trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) with and without exogenous carbon and nitrogen. From 72 bacterial isolates obtained, eight representative ones were tentatively identified as members of the genusPseudomonasbased on size, shape, Gram reaction, and reaction on fluorescent and motility agar. Two of these eight isolates exhibited a significant increase in numbers of viable cells when grown in a medium with trifluralin as the only exogenous carbon and nitrogen source. Chromatographic analysis of culture medium extracts revealed the presence of a degradation product which was not present in the herbicide control. The concentration of this unknown was greatest at the 50 mg/L level of trifluralin which also supported the greatest bacterial growth.


2021 ◽  
Author(s):  
Jin-Tian Ma ◽  
Li-Sheng Wang ◽  
Zhi Chai ◽  
Xin-Feng Chen ◽  
Bo-Cheng Tang ◽  
...  

Quinazoline skeletons are synthesized by amino acids catabolism/reconstruction combined with dimethyl sulfoxide insertion/cyclization for the first time. The amino acid acts as a carbon and nitrogen source through HI-mediated catabolism...


2016 ◽  
Vol 45 (41) ◽  
pp. 16519-16525 ◽  
Author(s):  
Jiao Xue ◽  
Runwei Wang ◽  
Zongtao Zhang ◽  
Shilun Qiu

C, N co-modified niobium pentoxide (Nb2O5) nanoneedles have been successfully synthesized via a facile hydrothermal method with Niobium Chloride (NbCl5) as a precursor and triethylamine as both the carbon and nitrogen source.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Shiyi Ou ◽  
Jing Zhang ◽  
Yong Wang ◽  
Ning Zhang

A mixture of wheat bran with maize bran as a carbon source and addition of (NH4)SO4 as nitrogen source was found to significantly increase production of feruloyl esterase (FAE) enzyme compared with wheat bran as a sole carbon and nitrogen source. The optimal conditions in conical flasks were carbon source (30 g) to water 1 : 1, maize bran to wheat bran 1 : 2, (NH4)SO4 1.2 g and MgSO4 70 mg. Under these conditions, FAE activity was 7.68 mU/g. The FAE activity on the mixed carbon sources showed, high activity against the plant cell walls contained in the cultures.


2009 ◽  
Vol 325 (1-2) ◽  
pp. 243-253 ◽  
Author(s):  
A. Montoya-González ◽  
O. E. González-Navarro ◽  
B. Govaerts ◽  
K. D. Sayre ◽  
I. Estrada ◽  
...  

2015 ◽  
Vol 197 (17) ◽  
pp. 2831-2839 ◽  
Author(s):  
Katherine A. Miller ◽  
Robert S. Phillips ◽  
Paul B. Kilgore ◽  
Grady L. Smith ◽  
Timothy R. Hoover

ABSTRACTSalmonella entericserovar Typhimurium, a major cause of food-borne illness, is capable of using a variety of carbon and nitrogen sources. Fructoselysine and glucoselysine are Maillard reaction products formed by the reaction of glucose or fructose, respectively, with the ε-amine group of lysine. We report here thatS. Typhimurium utilizes fructoselysine and glucoselysine as carbon and nitrogen sources via a mannose family phosphotransferase (PTS) encoded bygfrABCD(glucoselysine/fructoselysine PTS components EIIA, EIIB, EIIC, and EIID; locus numbers STM14_5449 to STM14_5454 inS. Typhimurium 14028s). Genes coding for two predicted deglycases within thegfroperon,gfrEandgfrF, were required for growth with glucoselysine and fructoselysine, respectively. GfrF demonstrated fructoselysine-6-phosphate deglycase activity in a coupled enzyme assay. The biochemical and genetic analyses were consistent with a pathway in which fructoselysine and glucoselysine are phosphorylated at the C-6 position of the sugar by the GfrABCD PTS as they are transported across the membrane. The resulting fructoselysine-6-phosphate and glucoselysine-6-phosphate subsequently are cleaved by GfrF and GfrE to form lysine and glucose-6-phosphate or fructose-6-phosphate. Interestingly, althoughS. Typhimurium can use lysine derived from fructoselysine or glucoselysine as a sole nitrogen source, it cannot use exogenous lysine as a nitrogen source to support growth. Expression ofgfrABCDEFwas dependent on the alternative sigma factor RpoN (σ54) and an RpoN-dependent LevR-like activator, which we designated GfrR.IMPORTANCESalmonellaphysiology has been studied intensively, but there is much we do not know regarding the repertoire of nutrients these bacteria are able to use for growth. This study shows that a previously uncharacterized PTS and associated enzymes function together to transport and catabolize fructoselysine and glucoselysine. Knowledge of the range of nutrients thatSalmonellautilizes is important, as it could lead to the development of new strategies for reducing the load ofSalmonellain food animals, thereby mitigating its entry into the human food supply.


2020 ◽  
Vol 2 (1) ◽  
pp. 43

Huge amounts of feathers are discarded as wastage, and it has always been environmentally concerned as they are difficult to destroy. Feather establishes over 90% protein, which gives it a rigid structure. Biotechnological techniques can help to degrade the feathers and use as biofertilizer. The best strategy is by utilizing keratinase producing keratinolytic microorganisms from the poultry waste to deteriorate the feathers. The poultry sample was collected at the local poultry farm. Using skimmed milk agar, enriched proteolytic bacteria were isolated, and the colony morphology assessed. The isolated bacteria were assessed for keratinolytic ability by using carbon and nitrogen sources. Liquid protein hydrolysate (LPH) was prepared and added as fertilizer to determine the growth effect on Capsicum annum. The antibacterial and antioxidant activity was assessed. The isolated Proteus sp. from the poultry waste has the ability to disintegrate the feathers completely on the 10th day. The enzymatic activity from Proteus sp. was observed increased with the presence of fructose (1.435 U/mL) and yeast extract (2.045 U/mL). The optimum temperature was at 40 °C (0.664 U/mL), pH value 7 (0.871 U/mL), and feather concentration at 1.5% (1.2 U/mL). LPH promoted the growth of Capsicum annum and increased total chlorophyll content (5.7341mg/g) in test plants. The antimicrobial activity displayed that Escherichia coli is susceptible to LPH, and also increased antioxidant activity was demonstrated in the test plants. Thus, the addition of liquid protein hydrolysate exhibited that it has the capability to aid plant development.


2005 ◽  
pp. 269-276
Author(s):  
Mirjana Stajic ◽  
Sonja Duletic-Lausevic ◽  
Jelena Vukojevic

Pleurotus eryngii produced laccase (Lac) both under conditions of submerged fermentation (SF) and solid-state fermentation (SSF) using all of the investigated carbon and nitrogen sources, while significant peroxidases production occurred only under SSF conditions. The highest levels of Lac activity were found under SF conditions of dry ground mandarine peels (999.5 U/l). After purification of extracellular crude enzyme mixture of P. eryngii which was grown under SF conditions with dry ground mandarine peels it was revealed two peaks of Lac activity and one peak of activity against phenol red in absence of external Mn2+ which was very low (1.4 U/l). Results obtained by purification also showed that the levels of phenol red oxidation in absence of external Mn2+ were higher than phenol red oxidation levels in presence of external Mn2+. In the medium with the best carbon source for Lac production (dry ground mandarine peels), (NH4)2SO4, with a nitrogen concentration of 20 mM, was the most optimum nitrogen source among 8 investigated sources.


Sign in / Sign up

Export Citation Format

Share Document