scholarly journals Adaptation of Plants to Salt Stress: Characterization of Na+ and K+ Transporters and Role of CBL Gene Family in Regulating Salt Stress Response

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 687 ◽  
Author(s):  
Toi Ketehouli ◽  
Kue Foka Idrice Carther ◽  
Muhammad Noman ◽  
Fa-Wei Wang ◽  
Xiao-Wei Li ◽  
...  

Salinity is one of the most serious factors limiting the productivity of agricultural crops, with adverse effects on germination, plant vigor, and crop yield. This salinity may be natural or induced by agricultural activities such as irrigation or the use of certain types of fertilizer. The most detrimental effect of salinity stress is the accumulation of Na+ and Cl− ions in tissues of plants exposed to soils with high NaCl concentrations. The entry of both Na+ and Cl− into the cells causes severe ion imbalance, and excess uptake might cause significant physiological disorder(s). High Na+ concentration inhibits the uptake of K+, which is an element for plant growth and development that results in lower productivity and may even lead to death. The genetic analyses revealed K+ and Na+ transport systems such as SOS1, which belong to the CBL gene family and play a key role in the transport of Na+ from the roots to the aerial parts in the Arabidopsis plant. In this review, we mainly discuss the roles of alkaline cations K+ and Na+, Ion homeostasis-transport determinants, and their regulation. Moreover, we tried to give a synthetic overview of soil salinity, its effects on plants, and tolerance mechanisms to withstand stress.

2021 ◽  
Author(s):  
Ashok Saddhe Ankush ◽  
Ajay Kumar Mishra ◽  
Kumar Kundan

Mycorrhiza ◽  
2008 ◽  
Vol 18 (6-7) ◽  
pp. 317-329 ◽  
Author(s):  
Mariela Echeverria ◽  
Agustina Azul Scambato ◽  
Analía Inés Sannazzaro ◽  
Santiago Maiale ◽  
Oscar Adolfo Ruiz ◽  
...  

2015 ◽  
Vol 402 (1-2) ◽  
pp. 159-178 ◽  
Author(s):  
Wei Ji ◽  
Jin Koh ◽  
Sheng Li ◽  
Ning Zhu ◽  
Craig P. Dufresne ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2261
Author(s):  
Nidhi Gupta ◽  
Abhishek Kanojia ◽  
Arpana Katiyar ◽  
Yashwanti Mudgil

Salt stress is considered to be the most severe abiotic stress. High soil salinity leads to osmotic and ionic toxicity, resulting in reduced plant growth and crop production. The role of G-proteins during salt stresses is well established. AGB1, a G-protein subunit, not only plays an important role during regulation of Na+ fluxes in roots, but is also involved in the translocation of Na+ from roots to shoots. N-Myc Downregulated like 1 (NDL1) is an interacting partner of G protein βγ subunits and C-4 domain of RGS1 in Arabidopsis. Our recent in-planta expression analysis of NDL1 reported changes in patterns during salt stress. Based on these expression profiles, we have carried out functional characterization of the AGB1-NDL1 module during salinity stress. Using various available mutant and overexpression lines of NDL1 and AGB1, we found that NDL1 acts as a negative regulator during salt stress response at the seedling stage, an opposite response to that of AGB1. On the other hand, during the germination phase of the plant, this role is reversed, indicating developmental and tissue specific regulation. To elucidate the mechanism of the AGB1-NDL1 module, we investigated the possible role of the three NDL1 stress specific interactors, namely ANNAT1, SLT1, and IDH-V, using yeast as a model. The present study revealed that NDL1 acts as a modulator of salt stress response, wherein it can have both positive as well as negative functions during salinity stress. Our findings suggest that the NDL1 mediated stress response depends on its developmental stage-specific expression patterns as well as the differential presence and interaction of the stress-specific interactors.


2021 ◽  
Vol 22 (23) ◽  
pp. 12649
Author(s):  
Zhen Peng ◽  
Xuran Jiang ◽  
Zhenzhen Wang ◽  
Xiaoyang Wang ◽  
Hongge Li ◽  
...  

Salinity is a critical abiotic factor that significantly reduces agricultural production. Cotton is an important fiber crop and a pioneer on saline soil, hence genetic architecture that underpins salt tolerance should be thoroughly investigated. The Raf-like kinase B-subfamily (RAF) genes were discovered to regulate the salt stress response in cotton plants. However, understanding the RAFs in cotton, such as Enhanced Disease Resistance 1 and Constitutive Triple Response 1 kinase, remains a mystery. This study obtained 29, 28, 56, and 54 RAF genes from G. arboreum, G. raimondii, G. hirsutum, and G. barbadense, respectively. The RAF gene family described allopolyploidy and hybridization events in allotetraploid cotton evolutionary connections. Ka/Ks analysis advocates that cotton evolution was subjected to an intense purifying selection of the RAF gene family. Interestingly, integrated analysis of synteny and gene collinearity suggested dispersed and segmental duplication events involved in the extension of RAFs in cotton. Transcriptome studies, functional validation, and virus-induced gene silencing on salt treatments revealed that GhRAF42 is engaged in salt tolerance in upland cotton. This research might lead to a better understanding of the role of RAFs in plants and the identification of suitable candidate salt-tolerant genes for cotton breeding.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Wasifa Hafiz Shah ◽  
Aadil Rasool ◽  
Seerat Saleem ◽  
Naveed Ul Mushtaq ◽  
Inayatullah Tahir ◽  
...  

Abiotic stress is the major threat confronted by modern-day agriculture. Salinity is one of the major abiotic stresses that influence geographical distribution, survival, and productivity of various crops across the globe. Plants perceive salt stress cues and communicate specific signals, which lead to the initiation of defence response against it. Stress signalling involves the transporters, which are critical for water transport and ion homeostasis. Various cytoplasmic components like calcium and kinases are critical for any type of signalling within the cell which elicits molecular responses. Stress signalling instils regulatory proteins and transcription factors (TFs), which induce stress-responsive genes. In this review, we discuss the role of ion transporters, protein kinases, and TFs in plants to overcome the salt stress. Understanding stress responses by components collectively will enhance our ability in understanding the underlying mechanism, which could be utilized for crop improvement strategies for achieving food security.


Author(s):  
Neeraj Kumar ◽  
Chellapilla Bharadwaj ◽  
Sarika Sahu ◽  
Aalok Shiv ◽  
Abhishek Kumar Shrivastava ◽  
...  

AbstractLncRNAs (long noncoding RNAs) are 200 bp length crucial RNA molecules, lacking coding potential and having important roles in regulating gene expression, particularly in response to abiotic stresses. In this study, we identified salt stress-induced lncRNAs in chickpea roots and predicted their intricate regulatory roles. A total of 3452 novel lncRNAs were identified to be distributed across all 08 chickpea chromosomes. On comparing salt-tolerant (ICCV 10, JG 11) and salt-sensitive cultivars (DCP 92–3, Pusa 256), 4446 differentially expressed lncRNAs were detected under various salt  treatments. We predicted 3373 lncRNAs to be regulating their target genes in cis regulating manner and 80 unique lncRNAs were observed as interacting with 136 different miRNAs, as eTMs (endogenous target mimic) targets of miRNAs and implicated them in the regulatory network of salt stress response. Functional analysis of these lncRNA revealed their association in targeting salt stress response-related genes like potassium transporter, transporter family genes, serine/threonine-protein kinase, aquaporins like TIP1-2, PIP2-5 and transcription factors like, AP2, NAC, bZIP, ERF, MYB and WRKY. Furthermore, about 614 lncRNA-SSRs (simple sequence repeats) were identified as a new generation of molecular markers with higher efficiency and specificity in chickpea. Overall, these findings will pave the understanding of comprehensive functional role of potential lncRNAs, which can help in providing insight into the molecular mechanism of salt tolerance in chickpea.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 147 ◽  
Author(s):  
Yong-Xing Zhu ◽  
Hai-Jun Gong ◽  
Jun-Liang Yin

Salt stress is a major threat for plant growth worldwide. The regulatory mechanisms of silicon in alleviating salt stress have been widely studied using physiological, molecular genetics, and genomic approaches. Recently, progresses have been made in elucidating the alleviative effects of silicon in salt-induced osmotic stress, Na toxicity, and oxidative stress. In this review, we highlight recent development on the impact of silicon application on salt stress responses. Emphasis will be given to the following aspects. (1) Silicon transporters have been experimentally identified in different plant species and their structure feature could be an important molecular basis for silicon permeability. (2) Silicon could mediate salt-induced ion imbalance by (i) regulating Na+ uptake, transport, and distribution and (ii) regulating polyamine levels. (3) Si-mediated upregulation of aquaporin gene expression and osmotic adjustment play important roles in alleviating salinity-induced osmotic stress. (4) Silicon application direct/indirectly mitigates oxidative stress via regulating the antioxidant defense and polyamine metabolism. (5) Omics studies reveal that silicon could regulate plants’ response to salt stress by modulating the expression of various genes including transcription factors and hormone-related genes. Finally, research areas that require further investigation to provide a deeper understanding of the role of silicon in plants are highlighted.


2017 ◽  
Vol 180 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Ivana Koleška ◽  
Dino Hasanagić ◽  
Ivana Maksimović ◽  
Borut Bosančić ◽  
Biljana Kukavica

Sign in / Sign up

Export Citation Format

Share Document