scholarly journals Role of Silicon in Mediating Salt Tolerance in Plants: A Review

Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 147 ◽  
Author(s):  
Yong-Xing Zhu ◽  
Hai-Jun Gong ◽  
Jun-Liang Yin

Salt stress is a major threat for plant growth worldwide. The regulatory mechanisms of silicon in alleviating salt stress have been widely studied using physiological, molecular genetics, and genomic approaches. Recently, progresses have been made in elucidating the alleviative effects of silicon in salt-induced osmotic stress, Na toxicity, and oxidative stress. In this review, we highlight recent development on the impact of silicon application on salt stress responses. Emphasis will be given to the following aspects. (1) Silicon transporters have been experimentally identified in different plant species and their structure feature could be an important molecular basis for silicon permeability. (2) Silicon could mediate salt-induced ion imbalance by (i) regulating Na+ uptake, transport, and distribution and (ii) regulating polyamine levels. (3) Si-mediated upregulation of aquaporin gene expression and osmotic adjustment play important roles in alleviating salinity-induced osmotic stress. (4) Silicon application direct/indirectly mitigates oxidative stress via regulating the antioxidant defense and polyamine metabolism. (5) Omics studies reveal that silicon could regulate plants’ response to salt stress by modulating the expression of various genes including transcription factors and hormone-related genes. Finally, research areas that require further investigation to provide a deeper understanding of the role of silicon in plants are highlighted.

2012 ◽  
Vol 78 (10) ◽  
pp. 3580-3591 ◽  
Author(s):  
Monique Rothe ◽  
Carl Alpert ◽  
Wolfram Engst ◽  
Stephanie Musiol ◽  
Gunnar Loh ◽  
...  

ABSTRACTTo study the impact of nutritional factors on protein expression of intestinal bacteria, gnotobiotic mice monoassociated withEscherichia coliK-12 were fed three different diets: a diet rich in starch, a diet rich in nondigestible lactose, and a diet rich in casein. Two-dimensional gel electrophoresis and electrospray-tandem mass spectrometry were used to identify differentially expressed proteins of bacteria recovered from small intestine and cecum. Oxidative stress response proteins such as AhpF, Dps, and Fur, all of which belong to the oxyR regulon, were upregulated inE. coliisolates from mice fed the lactose-rich diet. Luciferase reporter gene assays demonstrated that osmotic stress caused by carbohydrates led to the expression ofahpCFanddps, which was not observed in anE. coliΔoxyRmutant. Growth ofahpCFandoxyRdeletion mutants was strongly impaired when nondigestible sucrose was present in the medium. The wild-type phenotype could be restored by complementation of the deletions with plasmids containing the corresponding genes and promoters. The results indicate that some OxyR-dependent proteins play a major role in the adaptation ofE. colito osmotic stress. We conclude that there is an overlap of osmotic and oxidative stress responses. Mice fed the lactose-rich diet possibly had a higher intestinal osmolality, leading to the upregulation of OxyR-dependent proteins, which enable intestinalE. colito better cope with diet-induced osmotic stress.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 241
Author(s):  
Zhiyuan V. Zou ◽  
Kristell Le Gal ◽  
Ahmed E. El Zowalaty ◽  
Lara E. Pehlivanoglu ◽  
Viktor Garellick ◽  
...  

Dietary antioxidants and supplements are widely used to protect against cancer, even though it is now clear that antioxidants can promote tumor progression by helping cancer cells to overcome barriers of oxidative stress. Although recent studies have, in great detail, explored the role of antioxidants in lung and skin tumors driven by RAS and RAF mutations, little is known about the impact of antioxidant supplementation on other cancers, including Wnt-driven tumors originating from the gut. Here, we show that supplementation with the antioxidants N-acetylcysteine (NAC) and vitamin E promotes intestinal tumor progression in the ApcMin mouse model for familial adenomatous polyposis, a hereditary form of colorectal cancer, driven by Wnt signaling. Both antioxidants increased tumor size in early neoplasias and tumor grades in more advanced lesions without any impact on tumor initiation. Importantly, NAC treatment accelerated tumor progression at plasma concentrations comparable to those obtained in human subjects after prescription doses of the drug. These results demonstrate that antioxidants play an important role in the progression of intestinal tumors, which may have implications for patients with or predisposed to colorectal cancer.


Author(s):  
Suhas Balasaheb Karle ◽  
Akankhya Guru ◽  
Padmanabh Dwivedi ◽  
Kundan Kumar
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Amy V. Thees ◽  
Kathryn M. Pietrosimone ◽  
Clare K. Melchiorre ◽  
Jeremiah N. Marden ◽  
Joerg Graf ◽  
...  

The opportunistic pathogen Pseudomonas aeruginosa expresses a small molecular weight, cysteine-rich protein (PmtA), identified as a metallothionein (MT) protein family member. The MT family proteins have been well-characterized in eukaryotes as essential for zinc and copper homeostasis, protection against oxidative stress, and the ability to modify a variety of immune activities. Bacterial MTs share sequence homology, antioxidant chemistry, and heavy metal-binding capacity with eukaryotic MTs, however, the impact of bacterial MTs on virulence and infection have not been well-studied. In the present study, we investigated the role of PmtA in P. aeruginosa PAO1 using a PmtA-deficient strain (ΔpmtA). Here we demonstrated the virulence factor, pyocyanin, relies on the expression of PmtA. We showed that PmtA may be protective against oxidative stress, as an alternative antioxidant, glutathione, can rescue pyocyanin expression. Furthermore, the expression of phzM, which encodes a pyocyanin precursor enzyme, was decreased in the ΔpmtA mutant during early stationary phase. Upregulated pmtA expression was previously detected in confluent biofilms, which are essential for chronic infection, and we observed that the ΔpmtA mutant was disrupted for biofilm formation. As biofilms also modulate antibiotic susceptibility, we examined the ΔpmtA mutant susceptibility to antibiotics and found that the ΔpmtA mutant is more susceptible to cefepime and ciprofloxacin than the wild-type strain. Finally, we observed that the deletion of pmtA results in decreased virulence in a waxworm model. Taken together, our results support the conclusion that PmtA is necessary for the full virulence of P. aeruginosa and may represent a potential target for therapeutic intervention.


2017 ◽  
Vol 27 (2) ◽  
pp. 211-228 ◽  
Author(s):  
Kaja Chmielewska ◽  
Dorota Formanowicz ◽  
Piotr Formanowicz

Abstract Atherosclerosis as one of the crucial causes of cardiovascular diseases (CVD) is the leading reason of death worldwide. One of the contributing factors to this phenomenon is endothelial dysfunction, which is associated with the impact of various agents and their interactions. Tobacco smoke is one of the well known factors here. For better understanding of its significance a model of its impact on atherosclerotic plaque formation has been proposed. The model contains selected aspects of the influence of tobacco smoke, dual function of nitric oxide (NO) (influence of various mechanisms on NO bioavailability), oxidative stress which promotes low density lipoproteins oxidation, macrophages significance and other mechanisms leading to an aggravation of the endothelial disturbances. The model has been built using Petri nets theory and the analysis has been based on t-invariants. This approach allowed to confirm the important role of inflammation and oxidative stress in atherosclerosis development and moreover it has shown the considerable influence of the cigarette smoke.


2019 ◽  
Vol 20 (5) ◽  
pp. 1176 ◽  
Author(s):  
Wenying Gao ◽  
Zheng Feng ◽  
Qingqing Bai ◽  
Jinjin He ◽  
Yingjuan Wang

Melatonin (MT; N-acetyl-5-methoxytryptamine) is a pleiotropic signaling molecule that has been demonstrated to play an important role in plant growth, development, and regulation of environmental stress responses. Studies have been conducted on the role of the exogenous application of MT in a few species, but the potential mechanisms of MT-mediated stress tolerance under salt stress are still largely unknown. In this study, naked oat seedlings under salt stress (150 mM NaCl) were pretreated with two different concentrations of MT (50 and 100 μM), and the effects of MT on the growth and antioxidant capacity of naked oat seedlings were analyzed to explore the regulatory effect of MT on salt tolerance. The results showed that pretreating with different concentrations of MT promoted the growth of seedlings in response to 150 mM NaCl. Different concentrations of MT reduced hydrogen peroxide, superoxide anion, and malondialdehyde contents. The exogenous application of MT also increased superoxide dismutase, peroxidase, catalase, and ascorbate peroxide activities. Chlorophyll content, leaf area, leaf volume, and proline increased in the leaves of naked oat seedlings under 150 mM NaCl stress. MT upregulated the expression levels of the lipid peroxidase genes lipoxygenase and peroxygenase, a chlorophyll biosynthase gene (ChlG), the mitogen-activated protein kinase genes Asmap1 and Aspk11, and the transcription factor genes (except DREB2), NAC, WRKY1, WRKY3, and MYB in salt-exposed MT-pretreated seedlings when compared with seedlings exposed to salt stress alone. These results demonstrate an important role of MT in the relief of salt stress and, therefore, provide a reference for managing salinity in naked oat.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Speranza Rubattu ◽  
Maurizio Forte ◽  
Salvatore Raffa

Increased oxidative stress from both mitochondrial and cytosolic sources contributes to the development and the progression of cardiovascular diseases (CVDs), and it is a target of therapeutic interventions. The numerous efforts made over the last decades in order to develop tools able to monitor the oxidative stress level in patients affected by CVDs rely on the need to gain information on the disease state. However, this goal has not been satisfactorily accomplished until now. Among others, the isolation of circulating leukocytes to measure their oxidant level offers a valid, noninvasive challenge that has been tested in few pathological contexts, including hypertension, atherosclerosis and its clinical manifestations, and heart failure. Since leukocytes circulate in the blood stream, it is expected that they might reflect quite closely both systemic and cardiovascular oxidative stress and provide useful information on the pathological condition. The results of the studies discussed in the present review article are promising. They highlight the importance of measuring oxidative stress level in circulating mononuclear cells in different CVDs with a consistent correlation between degree of oxidative stress and severity of CVD and of its complications. Importantly, they also point to a double role of leukocytes, both as a marker of disease condition and as a direct contributor to disease progression. Finally, they show that the oxidative stress level of leukocytes reflects the impact of therapeutic interventions. It is likely that the isolation of leukocytes and the measurement of oxidative stress, once adequately developed, may represent an eligible tool for both research and clinical purposes to monitor the role of oxidative stress on the promotion and progression of CVDs, as well as the impact of therapies.


2020 ◽  
Vol 21 (9) ◽  
pp. 3289 ◽  
Author(s):  
Hyeong Rok Yun ◽  
Yong Hwa Jo ◽  
Jieun Kim ◽  
Yoonhwa Shin ◽  
Sung Soo Kim ◽  
...  

Autophagy is a catabolic process for unnecessary or dysfunctional cytoplasmic contents by lysosomal degradation pathways. Autophagy is implicated in various biological processes such as programmed cell death, stress responses, elimination of damaged organelles and development. The role of autophagy as a crucial mediator has been clarified and expanded in the pathological response to redox signalling. Autophagy is a major sensor of the redox signalling. Reactive oxygen species (ROS) are highly reactive molecules that are generated as by-products of cellular metabolism, principally by mitochondria. Mitochondrial ROS (mROS) are beneficial or detrimental to cells depending on their concentration and location. mROS function as redox messengers in intracellular signalling at physiologically low level, whereas excessive production of mROS causes oxidative damage to cellular constituents and thus incurs cell death. Hence, the balance of autophagy-related stress adaptation and cell death is important to comprehend redox signalling-related pathogenesis. In this review, we attempt to provide an overview the basic mechanism and function of autophagy in the context of response to oxidative stress and redox signalling in pathology.


Sign in / Sign up

Export Citation Format

Share Document