scholarly journals A Technical-Economic Comparison between Conventional Tillage and Conservative Techniques in Paddy-Rice Production Practice in Northern Italy

Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 886 ◽  
Author(s):  
Aldo Calcante ◽  
Roberto Oberti

In this study a technical-economic comparison was conducted to compare three different agronomic practices applied to paddy rice cultivation areas in Italy: one based on conventional tillage (CT), and two adopting conservative agriculture approaches, namely minimum tillage (MT) and no-tillage (NT). Data about production inputs (seed, fertilizers, agrochemicals, fuel) and working time were measured for each technique during the whole production season in three experimental fields. The total production costs were computed by adding the mechanization costs, calculated through the ASABE (American Society of Agricultural and Biological Engineers) EP (Engineering Practice) 496.3 methodology, and the production input costs. The results of the study highlighted a significant reduction of total costs obtained with both minimum (−16%) and no-tillage (−19%) compared to conventional tillage.

Soil Research ◽  
2019 ◽  
Vol 57 (4) ◽  
pp. 365 ◽  
Author(s):  
Francesco De Mastro ◽  
Gennaro Brunetti ◽  
Andreina Traversa ◽  
Claudio Cocozza

The excessive use of fertilisers and frequent and deep tillage are not considered good agricultural practices because they increase production costs and reduce soil fertility. Water extractable organic matter (WEOM) is the fraction of soil organic matter responsible for nutrient transport and bioavailability. The aim of this work was to investigate the effect of a 2-year rotation of faba bean–wheat, cultivated for a decade, and the agricultural practices (conventional vs no tillage, and fertilisation vs no fertilisation) on selected soil parameters and WEOM quality. Results showed that the soil organic carbon (SOC) and the total nitrogen (TN) content increased after the wheat and faba bean, respectively. Plots managed with conventional tillage showed WEOM with higher OC content with respect to no-tillage plots. A higher WEOM OC content was observed also in the fertilised plots. The WEOM of fertilised and faba bean plots was derived from decomposition of native SOC, but the microbial community decomposition was the main origin of WEOM after wheat.


2010 ◽  
Vol 149 (4) ◽  
pp. 487-496 ◽  
Author(s):  
M. HUANG ◽  
MD. IBRAHIM ◽  
B. XIA ◽  
Y. ZOU

SUMMARYSimplified cultivation technologies for rice have become increasingly attractive in recent years in China because of their social, economical and environmental benefits. To date, several simplified cultivation technologies, such as conventional tillage and seedling throwing (CTST), conventional tillage and direct seeding (CTDS), no-tillage and seedling throwing (NTST), no-tillage and direct seeding (NTDS) and no-tillage and transplanting (NTTP), have been developed in China. Most studies have shown that rice grown under each of these simplified cultivation technologies can produce a grain yield equal to or higher than traditional cultivation (conventional tillage and transplanting). Studies that have described the influences of agronomic practices on yield formation of rice under simplified cultivation have demonstrated that optimizing agronomy practices would increase the efficiencies of simplified cultivation systems. Further research is needed to optimize the management strategies for CTST, CTDS and NTST rice which have developed quickly in recent years, to strengthen basic research for those simplified cultivation technologies that are rarely used at present (such as NTTP and NTDS), to select and breed cultivars suitable for simplified cultivation and to compare the practicability and effectiveness of different simplified cultivation technologies in different rice production regions.


2002 ◽  
Vol 46 (6-7) ◽  
pp. 183-190 ◽  
Author(s):  
C.S. Tan ◽  
C.F. Drury ◽  
W.D. Reynolds ◽  
J.D. Gaynor ◽  
T.Q. Zhang ◽  
...  

No-tillage (NT) is becoming increasingly attractive to farmers because it clearly reduces soil erosion and production costs relative to conventional tillage (CT). However, the impacts of no-tillage on the quantity and quality of tile drainage water are less well known. Accordingly, two adjacent field scale on-farm CT and NT sites were established to compare the impacts of the two tillage systems on tile drainage and NO3-N loss in tile drainage water. The effect of the two tillage systems on soil structure, hydraulic conductivity, and earthworm population were also investigated. The total NO3-N loss in tile drainage water over the 5-yr period (1995-1999) was 82.3 kg N ha−1 for the long-term NT site and 63.7 kg N ha−1 for the long-term CT site. The long-term NT site had 48% more tile drainage (6,975 kL ha−1) than the long-term CT site (4,716 kL ha−1). The average flow weighted mean (FWM) NO3-N concentration in tile drainage water over the 5-yr period was 11.8 mg N L−1 for the NT site and 13.5 mg N L−1 for the CT site. For both tillage systems, approximately 80% of tile drainage and NO3-N loss in tile drainage water occurred during the November to April non-growing season. Long-term NT improved wet aggregate stability, increased near-surface hydraulic conductivity and increased both the number and mass of earthworms relative to long-term CT. The greater tile drainage and NO3-N loss under NT were attributed to an increase in continuous soil macropores, as implied by greater hydraulic conductivity and greater numbers of earthworms.


2020 ◽  
Vol 8 (2) ◽  
pp. 128-149
Author(s):  
Dini Maulana Lestari

This paper will discuss about the immaterial costs and production yields at one of the refined sugar factory companies in Makassar, South Sulawesi. The theory is based on the fact that Immaterial is a cost that is almsgiving, meaning costs that are outside of the basic costs of the company in producing production, so this research aims to find out: (1) what is the production cost needed to produce this production, (2) the maximum level of production at company from 2013 to 2017. This type of research is a quantitative study because it uses a questionnaire in the form of values ​​that are processed using the marginal cost approach formula. The results of the analysis show that (1) the maximum level of production costs occurred in 2016 amounting to 6,912 with an Immaterial cost of Rp. 2,481,796,800 and the total production produced is 359,077.3 tons (2) The required workforce with the total production produced is 359,077.3 tones of 180 people including the maximum production point which means that the lowest value is achieved (optimal).    


2019 ◽  
Vol 4 (2) ◽  
pp. 205-214
Author(s):  
Erika Fatma

Lot sizing problem in production planning aims to optimize production costs (processing, setup and holding cost) by fulfilling demand and resources capacity costraint. The Capacitated Lot sizing Problem (CLSP) model aims to balance the setup costs and inventory costs to obtain optimal total costs. The object of this study was a plastic component manufacturing company. This study use CLSP model, considering process costs, holding costs and setup costs, by calculating product cycle and setup time. The constraint of this model is the production time capacity and the storage capacity of the finished product. CLSP can reduce the total production cost by 4.05% and can reduce setup time by 46.75%.  Keyword: Lot size, CLSP, Total production cost.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Blessing Mhlanga ◽  
Laura Ercoli ◽  
Elisa Pellegrino ◽  
Andrea Onofri ◽  
Christian Thierfelder

AbstractConservation agriculture has been promoted to sustainably intensify food production in smallholder farming systems in southern Africa. However, farmers have rarely fully implemented all its components, resulting in different combinations of no-tillage, crop rotation, and permanent soil cover being practiced, thus resulting in variable yield responses depending on climatic and soil conditions. Therefore, it is crucial to assess the effect of conservation agriculture components on yield stability. We hypothesized that the use of all three conservation agriculture components would perform the best, resulting in more stable production in all environments. We evaluated at, eight trial locations across southern Africa, how partial and full implementation of these components affected crop yield and yield stability compared with conventional tillage alone or combined with mulching and/or crop rotation. Grain yield and shoot biomass of maize and cowpea were recorded along with precipitation for 2 to 5 years. Across different environments, the addition of crop rotation and mulch to no-tillage increased maize grain by 6%, and the same practices added to conventional tillage led to 13% yield increase. Conversely, adding only mulch or crop rotation to no-tillage or conventional tillage led to lower or equal maize yield. Stability analyses based on Shukla’s index showed for the first time that the most stable systems are those in which mulch is added without crop rotation. Moreover, the highest yielding systems were the least stable. Finally, additive main effects and multiplicative interaction analysis allowed clarifying that mulch added to no-tillage gives stable yields on sandy soil with high rainfall. Similarly, mulch added to conventional tillage gives stable yield on sandy soil, but under low rainfall. This is the first study that highlighted the crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa, supporting their adaptability to climate change.


2006 ◽  
Vol 20 (3) ◽  
pp. 622-626 ◽  
Author(s):  
Patrick W. Geier ◽  
Phillip W. Stahlman ◽  
John C. Frihauf

Field experiments were conducted during 2003 and 2004 to compare the effectiveness of KIH-485 and S-metolachlor for PRE weed control in no-tillage and conventional-tillage corn. Longspine sandbur control increased as KIH-485 or S-metolachlor rates increased in conventional-tillage corn, but control did not exceed 75% when averaged over experiments. Both herbicides controlled at least 87% of green foxtail with the exception of no-tillage corn in 2004, when KIH-485 was more effective than S-metolachlor at lower rates. Palmer amaranth control ranged from 85 to 100% in 2003 and 80 to 100% in 2004, with the exception of only 57 to 76% control at the lowest two S-metolachlor rates in 2004. Puncturevine control exceeded 94% with all treatments in 2003. In 2004, KIH-485 controlled 86 to 96% of the puncturevine, whereas S-metolachlor controlled only 70 to 81%. Mixtures of atrazine with KIH-485 or S-metolachlor generally provided the most effective control of broadleaf weeds studied.


2010 ◽  
Vol 450 ◽  
pp. 365-368
Author(s):  
James C. Chen ◽  
Chia Wen Chen ◽  
Kou Huang Chen ◽  
Chien Hsin Lin

Wafer fabrication is a capital intensive industry. A 12-inch wafer fabrication plant needs a typical investment of US$ 3 billion, and the equipment cost constitutes about two-thirds to three-quarters of the total production costs. Therefore, capacity planning is crucial to the investment and performance of wafer fabrication plants. Several formulae are presented to calculate the required number of machines with sequential, parallel, and batch processing characteristics, respectively. An AutoSched AP simulation model using data from real foundry fabrication plants is used in a case study to evaluate the performance of the proposed formulae. Simulation results indicate that the proposed formulae can quickly and accurately calculate the required number of cluster tools leading to the required monthly output rate.


Author(s):  
К.Н. Привалова ◽  
Р.Р. Каримов

Исследования по определению энергетической эффективности пастбищных систем со злаковыми и бобово-злаковыми травостоями проведены в Федеральном научном центре кормопроизводства и агроэкологии им. В. Р. Вильямса. В статье приведены результаты агроэнергетической оценки многовариантных пастбищных систем со злаковыми травостоями, созданными в 1946 году. Даны количественные показатели по сбору обменной энергии, совокупным затратам на её производство, окупаемости затрат в зависимости от системы ведения пастбищ. Изучена эффективность совокупных затрат в виде овеществлённого труда (на семена, удобрения, сельскохозяйственные машины, средства огораживания загонов и прочее) и живого труда (работы трактористов, пастухов и строителей и др.). Обоснована высокая агроэнергетическая эффективность изучаемых пастбищных систем благодаря мобилизации в продукционный процесс природных факторов, долевое участие которых в структуре производства обменной энергии составило 69–84%. Природные факторы, участвующие в продукционном процессе луговых агроэкосистем, характеризуются большим разнообразием. Это не только использование солнечной энергии и азотфиксация бобовыми травами, но и долголетие травостоев, самовозобновление фитоценозов, дерновообразовательный процесс (повышение плодородия почвы), получение дешёвого корма и улучшение здоровья животных при летнем выпасе. Роль возобновляемых природных факторов выявлена на основе балансового метода, принятого в экономике (по разнице сбора обменной энергии и антропогенных затрат). Благодаря ведущей роли природных факторов в структуре произведённой продукции агроэнергетический коэффициент окупаемости совокупных затрат антропогенной энергии (АК) за счёт сбора обменной энергии достигал 3–6 раз в среднем за 45 лет. Разработанные в результате долголетних исследований многовариантные энергосберегающие пастбищные системы обосновывают возможность рекомендовать их производству с учётом применения различного уровня энергозатрат. Ключевые слова: культурные пастбища, системы ведения, долголетние травостои, сбор обменной энергии, совокупные антропогенные затраты, окупаемость затрат. The investigation was conducted at the Federal Williams Research Center of Fodder Production and Agroecology and was aimed at testing energy efficiency of gramineous and legume-gramineous swards. This article presents the results obtained on pasture ecosystems with gramineous planted in 1946. Exchange energy yield, total production costs and economic effectiveness were analyzed. Total production costs comprised costs for seeds, fertilizers, machinery, construction materials, labor, etc. Introduction of natural factors into the production process resulted in higher energy efficiency. Their share amounted to 69–84% in the final exchange energy yield. There are a lot of natural factors that affect grass productivity such as solar energy, nitrogen-fixation, sward longevity and regeneration, soil fertility, low-cost feed production, and livestock health. The value of natural factors was determined according to the balance method (by the difference between exchange energy yield and anthropogenic costs). Since environmental factors had a leading role in the production process, the return rate raised by 3–6 times for 45 years due to exchange energy increase. Therefore, pasture ecosystems developed can be recommended for a large-scale forage production.


Sign in / Sign up

Export Citation Format

Share Document