scholarly journals Prediction of the Hind-Leg Muscles Weight of Yearling Dairy-Beef Steers Using Carcass Weight, Wither Height and Ultrasound Carcass Measurements

Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 651 ◽  
Author(s):  
Addisu Hailu Addis ◽  
Hugh Thomas Blair ◽  
Stephen Todd Morris ◽  
Paul Richard Kenyon ◽  
Nicola Maria Schreurs

Prediction equations have been widely utilized for carcass classification and grading systems in older beef cattle. However, the equations are mostly relevant for common beef breeds and 18 to 24 month old animals; there are no equations suitable for yearling, dairy-origin cattle. Therefore, this study developed prediction models using 60 dairy-origin, 8 to 12 month old steers to indicate saleable meat yield from hind-legs, which would assist with carcass classification and grading. Fat depth over the rump, rib fat depth, and eye muscle area between the 12th and 13th ribs were measured using ultrasound, and wither height was recorded one week prior to slaughter. The muscles from the hind-leg were retrieved 24 h after slaughter. Prediction equations were modeled for the hind-leg muscles weight using carcass weight, wither height, eye muscle area, rump, and rib fat depths as predictors. Carcass weight explained 61.5% of the variation in hind-leg muscles weight, and eye muscle area explained 39.9% (p < 0.05). Their combination in multivariate analysis explained 63.5% of the variation in hind-leg muscles weight. The R2 of the prediction in univariate and multivariate analyses was improved when data were analyzed per age group. Additional explanatory traits for yearling steers, including body length, hearth girth, and muscle depth and dimensions measured using video image analysis scanning (VIAscan), could improve the prediction ability of saleable meat yield from yearling dairy beef steers across the slaughter age groups.

1993 ◽  
Vol 33 (7) ◽  
pp. 825 ◽  
Author(s):  
D Perry ◽  
AP Yeates ◽  
WA McKiernan

The association between visually assessed muscle scores on live steers and their carcasses, eye muscle area, and the yield of saleable and lean meat was determined on 156 steers of mixed breeds (mean carcass weight 282 kg, mean P8 fat depth 13 mm). The contribution of subcutaneous and intermuscular fat to differences in saleable meat yield was also investigated. There was a negative correlation between P8 fat depth and both live ( r = -0.21) and carcass muscle score (r. = -0.31); therefore, the assessors were not scoring fatter steers as having better shape. The correlation between live and carcass muscle scores was 0.79. The correlation between carcass muscle score and eye muscle area was 0.58. When live muscle score, carcass muscle score, or eye muscle area was included in regression models already containing weight and fat depth, there was a significant (P<0.001) increase in the amount of variation in saleable and lean meat yield explained by the models. At the same liveweight and fat depth, a change in live muscle score from C (moderately muscled) to B (well muscled) was accompanied by an increase of 1.7% in saleable meat and 2.2% in lean meat, when these were expressed as a percentage of carcass weight. The equivalent change in carcass muscle score in carcasses of the same weight and f a t depth was accompanied by an increase of 1.9% in saleable meat and 2.4% in lean meat. The increased weight of saleable meat was not due to an increase in the dissected fat content of the meat. Weight of subcutaneous fat decreased as muscle score increased (P<0.01). There was no significant association between the amount of intermuscular fat and either live or carcass muscle score (r. = -0.075 and -0.18, respectively).


1993 ◽  
Vol 33 (3) ◽  
pp. 275 ◽  
Author(s):  
D Perry ◽  
WA McKiernan ◽  
AP Yeates

Domestic trade weight steers (149) were assessed visually for subcutaneous fat and then given a live muscle score based on the thickness and convexity of their shape relative to frame size, having adjusted for subcutaneous fat. After slaughter, carcasses were given visually assessed carcass muscle scores based on the same critera. Fat depths at the P8 site and 12-13th eye muscle area were measured. Half of each carcass was boned-out into primal joints with subcutaneous fat trimmed to 6 mm. The weights of these joints plus meat trim (85% visual lean) were added to obtain the weight of saleable meat. The weight of fat trimmed from the carcass, primal joints, and meat trimmings during the bone-out process was added to obtain weight of fat trim. The assessors did not give steers with a greater subcutaneous fat depth better muscle scores when scoring for muscle and intermuscular fat. There was a negative correlation between live muscle score and P8 fat depth (-0.37), and no significant correlation between carcass muscle score and P8 fat depth. The associations between muscle score and yield of saleable meat were investigated using multiple regression techniques, with fat depth and muscle score sequentially added after weight in the model. The coefficient of determination and the residual standard deviation were compared at each stage. For saleable meat yield (kg), liveweight and carcass weight were the main contributors to the variation explained by the models fitted. For saleable meat yield as a percentage of carcass weight, most of the variation accounted for by the models fitted was explained by fat depth, muscle score, and eye muscle area. When added after weight and fat depth in regression models, muscle score significantly increased the coefficient of determination in all cases, with an associated decrease in the residual standard deviation. The effect was strongest for percentage of saleable meat. At the same weight and fat depth, animals or carcasses with better muscle scores produced more saleable meat.


1992 ◽  
Vol 32 (4) ◽  
pp. 429 ◽  
Author(s):  
DL Hopkins ◽  
KD Gilbert ◽  
KL Pirlot ◽  
AHK Roberts

Growth and carcass parameters were studied for 62 second-cross lambs (Poll Dorset rams over Border Leicester x Merino ewes) and 55 purebred Elliottdale lambs. Second cross lambs grew faster (P<0.001) from weaning to the first slaughter time than Elliottdale lambs and consequently weighed more and had heavier carcasses. Elliottdale lambs produced significantly (P<0.001) more wool between birth and weaning. The slope of the relationship between GR (tissue depth over the 12th rib 110 mm from the midline) and carcass weight was 1.24 � 0.23 mm/kg for second cross lambs and 0.82 � 0.17 mm/kg for Elliottdale lambs, indicating the latter lambs were leaner at heavier weights. Measures of subcutaneous fat depth at the 5th/6th and 12th/13th ribs were similar when carcass weight differences were considered for a subsample of 21 second cross and 26 purebred Elliottdale lambs. Subjective assessment of fat distribution and carcass conformation by 2 assessors revealed a significant (P<0.001) difference between breeds; second cross lambs having a better conformation. Saleable meat yield, carcass composition, and muscle content of several cuts were determined for a subsample of lambs. At a common side weight of 8 kg there was no significant difference in saleable meat yield. At this weight, crossbred lambs had a significantly (P<0.05) higher muscle content (505 g/kg) than Elliottdale lambs (480 g/kg). Fat content was similar at 300 g/kg with crossbred lambs having significantly (P<0.05) less bone (190 g/kg) than Elliottdale lambs (2 10 g/kg). The legs of carcasses from crossbred lambs were shown to contain significantly more muscle than those of Elliottdales (206 v. 195 g/kg). Carcass weight explained some of the variation in weight of leg and forequarter muscle (r2 = 0.63 and 0.61). This was improved by including an assessment for conformation from 1 assessor (r2 = 0.69 and 0.64). Eye muscle area at the 12th rib did not add significantly to the prediction; it was not different between breeds, nor was its depth to width ratio different between breeds. The pH measurements of the M. longissimus thoracis et lumborum were similar between breeds.


1963 ◽  
Vol 3 (10) ◽  
pp. 249
Author(s):  
RM Seebeck

Variations in the cross-sectional area of eye muscle of carcasses cut between the tenth and eleventh ribs were investigated, using 105 Hereford and 51 Angus steers aged 20 months. These cattle consisted of three groups, born in successive years. At constant carcass weight, statistically significant differences in eye muscle area were found between breeds and between years. Breed and year differences were also found in eye muscle area with width and depth of eye muscle constant, so that there are limitations to the estimation of eye muscle area from width and depth measurements. A nomograph is given for estimating eye muscle area from width and depth for Hereford and Angus cattle, when all animals are reared in the same year and environment. The use of eye muscle area as an indicator of weight of carcass muscle is discussed.


1970 ◽  
Vol 48 (4) ◽  
pp. 770-776
Author(s):  
C.N. Ncobela ◽  
A.T. Kanengoni ◽  
M. Chimonyo

The response of Windsnyer pigs to diets containing varying levels of potato hash silage in nutritionally related blood biochemistry, carcass traits and primal pork was estimated. Thirty-six growing clinically healthy male Windsnyer pigs with an initial weight of 36 kg ± 4.89 (mean ± standard deviation (SD)) were randomly assigned to six experimental diets containing 0, 80, 160, 240, 320, and 400 potato hash silage g/kg dry matter (DM). Experimental diets were derived from mixing a summit diet containing no potato hash silage and a dilution diet containing 400 g potato hash silage/kg in various proportions. Pigs were allowed ad libitum access to diets and water. There was no relationship between inclusion levels of potato hash silage and albumin: globulin ratio, total protein, and uric acid. As inclusion levels of potato hash silage varied, there was a positive linear relationship between silage and albumin concentration. Globulin concentration had a positive quadratic relationship with the inclusion of potato hash silage. Inclusion levels of potato hash silage resulted in a positive quadratic relationship in alkaline phosphatase. There was a negative linear response in warm carcass weight and cold carcass weight to inclusion levels of silage. A negative linear response was observed in dressing percentage. Different inclusion levels of potato hash silage caused a positive quadratic relationship in cooler shrink. There were negative linear relationships between inclusion of potato hash silage with shoulder fat, carcass length and backfat thickness. There was a negative linear relationship between eye muscle area and inclusion level of ensiled potato hash. There was a positive quadratic relationship between hindquarter length (HQL) and inclusion levels of silage. The observed linear relationship between hindquarter circumference (HQC) and inclusion levels of potato hash silage was negative. There is a need to predict the optimum inclusion level of potato hash silage without compromising the healthiness and carcass yield of pigs.Keywords: Alkaline phosphatase, backfat thickness, cold carcass weight, cooler shrink, dorsal fat thickness, eye muscle area, hindquarter circumference, total protein


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2450
Author(s):  
Mariana Caetano ◽  
Rodrigo S. Goulart ◽  
Saulo L. Silva ◽  
Paulo R. Leme ◽  
Sérgio B. Pflanzer ◽  
...  

This study evaluated the effects of the duration of ZH supplementation and days on feed (DOF) on performance, carcass characteristics, and saleable meat yield of Nellore young bulls. The fixed effects included the duration (0, 20, 30, or 40 d before slaughter plus a 3 d ZH withdrawal period—8.33 mg of ZH/kg of DM) and DOF (90 and 117 d). Feed efficiency (G:F) linearly increased when the duration of ZH supplementation increased (p < 0.01). Nellore bulls fed ZH had greater HCW (p < 0.01), dressing percentage (p < 0.01) and Longissimus muscle area (LMA) (p < 0.01), but less 12th-rib fat (p = 0.04) than the control group. The hot carcass weight (HCW) (p < 0.01), and dressing percentage increased linearly (p < 0.01) with the increase of duration of ZH supplementation. The HCW, ossification, and 12th-rib fat increased with DOF (p < 0.01). The ZH supplemented group had most of the individual cuts of hindquarters and total saleable meat increased compared with the control. Zilpaterol hydrochloride was effective in improving hot carcass weight, hindquarter, and saleable meat yields of Nellore bulls when fed for at least 20 d before slaughter, independently of days on feed.


2009 ◽  
Vol 49 (6) ◽  
pp. 525 ◽  
Author(s):  
W. A. McKiernan ◽  
J. F. Wilkins ◽  
J. Irwin ◽  
B. Orchard ◽  
S. A. Barwick

The steer progeny of sires genetically diverse for fatness and meat yield were grown at different rates from weaning to feedlot entry and effects on growth, carcass and meat-quality traits were examined. The present paper, the second of a series, reports the effects of genetic and growth treatments on carcass traits. A total of 43 sires, within three ‘carcass class’ categories, defined as high potential for meat yield, marbling or both traits, was used. Where available, estimated breeding values for the carcass traits of retail beef yield (RBY%) and intramuscular fat (IMF%) were used in selection of the sires, which were drawn from Angus, Charolais, Limousin, Black Wagyu and Red Wagyu breeds, to provide a range of carcass sire types across the three carcass classes. Steer progeny of Hereford dams were grown at either conventional (slow: ~0.5 kg/day) or accelerated (fast: ~0.7 kg/day) rates from weaning to feedlot entry weight, with group means of ~400 kg. Accelerated and conventionally grown groups from successive calvings were managed to enter the feedlot at similar mean feedlot entry weights at the same time for the 100-day finish under identical conditions. Faster-backgrounded groups had greater fat levels in the carcass than did slower-backgrounded groups. Dressing percentages and fat colour were unaffected by growth treatment, whereas differences in ossification score and meat colour were explained by age at slaughter. There were significant effects of sire type for virtually all carcass traits measured in the progeny. Differences in hot standard carcass weight showed a clear advantage to European types, with variable outcomes for the Angus and Wagyu progeny. Sire selection by estimated breeding values (within the Angus breed) for yield and/or fat traits resulted in expected differences in the progeny for those traits. There were large differences in both meat yield and fatness among the types of greatest divergence in genetic potential for those traits, with the Black Wagyu and the Angus IMF clearly superior for IMF%, and the European types for RBY%. The Angus IMF progeny performed as well as that of the Black Wagyu for all fatness traits. Differences in RBY% among types were generally reflected by similar differences in eye muscle area. Results here provide guidelines for selecting sire types to target carcass traits for specific markets. The absence of interactions between growth and genetic treatments ensures that consistent responses can be expected across varying management and production systems.


2006 ◽  
Vol 46 (7) ◽  
pp. 951 ◽  
Author(s):  
L. M. Cafe ◽  
H. Hearnshaw ◽  
D. W. Hennessy ◽  
P. L. Greenwood

Two groups of Wagyu × Hereford steers grown slowly (slow preweaning group, n = 14, mean average daily gain = 631 g/day) or rapidly (rapid preweaning group, n = 15, mean average daily gain = 979 g/day) from birth to weaning were backgrounded on improved, temperate pasture to equivalent group liveweights (543 v. 548 kg, s.e. = 8.8 kg), then finished in a feedlot for 120 days. At weaning, the slow preweaning group was 79 kg lighter than the rapid preweaning group. They required an additional 43 days of backgrounding to reach the same feedlot entry weight as the rapid preweaning group. The slow preweaning group grew more rapidly during backgrounding (630 v. 549 g/day, s.e. = 13.7 g/day) but tended to grow more slowly during feedlotting (1798 v. 1982 g/day, s.e. = 74.9 g/day) than their rapid preweaning counterparts, with overall growth rates from weaning to feedlot exit not differing between the 2 groups (rapid 763 g/day v. slow 772 g/day, s.e. = 17.5 g/day). At slaughter, following the feedlot phase, carcass weights of the 2 groups did not differ significantly (rapid 430 kg v. slow 417 kg, s.e. = 7.2 kg). There was a tendency for the steers grown slowly to weaning to have a higher dressing percentage (57.6 v. 56.6%, s.e. = 0.33%), but there were no significant differences in carcass compositional characteristics between the 2 groups. The slow preweaning steers did have a greater eye muscle area than the rapid preweaning steers (106.6 v. 98.9 cm2, s.e. = 1.87) when carcass weight was used as a covariate. These findings demonstrate that cattle grown slowly to weaning have similar composition at slaughter as those grown rapidly during the same period when backgrounded on pasture to the same feedlot entry weight. Furthermore, marbling was not adversely affected by slow growth to weaning.


1981 ◽  
Vol 32 (1) ◽  
pp. 171 ◽  
Author(s):  
JM Thompson ◽  
R Barlow

The effect of sire breed on the growth and development of carcass characteristics was examined in 104 steer carcasses, over the weight range of c. 300 to 600 kg liveweight. The carcasses were obtained from 28 straightbred Hereford, 27 Brahman x Hereford, 23 Simmental x Hereford and 26 Friesian x Hereford steers, which were grown on pasture and slaughtered in four groups when the Herefords weighed c. 270, 370, 470 and 570 kg liveweight. Changes in carcass characteristics with weight were examined by using the linear form of the allometric equation (log10Y = log10A+blog10X). As liveweight increased, the proportion of carcass in the body increased (b = 1.152). At the same liveweight, Brahman cross steers had heavier carcasses than the Hereford steers, which were heavier than either the Simmental or Friesian cross steers (P < 0.05). Fat thickness at the 12th-13th rib site, and kidney and channel fat weight both increased at a proportionally faster rate than carcass weight (b = 1.511 and 1 567 respectively). At the same carcass weight, Hereford and Brahman cross carcasses had a greater fat thickness than Simmental and Friesian cross carcasses (P i 0.05). Differences between sire breeds in kidney and channel fat weight were not significant (P > 0.05). C:rcass length and eye muscle area increased at a proportionally slower rate than carcass weight (b = 0.268 and 0.466 respectively). At the same carcass weight, Friesian cross carcasses were longer, and Simmental cross carcasses had a larger eye muscle area than the other breed crosses (P < 0.05). As total side weight increased, the proportions of subcutaneous and intermuscular fatAincreased (b = 1.554 and 1.535 respectively), and the proportions of muscle and bone decreased (b = 0.938 and 0.676 respectively). At the same side weight, the Hereford and Brahman cross carcasses had more subcutaneous fat than the Simmental and Friesian cross carcasses (P < 0.05). The Hereford carcasses had more intermuscular fat than the Simmental cross carcasses, which had more muscle than the other breed crosses (P < 0.05). Friesian cross carcasses had more bone than the Simmental crosses, with Brahman cross and Hereford carcasses having the least bone (P < 0.05). Brahman cross carcasses had a higher conformation score than the Simmental cross and Hereford carcasses, the Friesian cross carcasses having the lowest (P < 0.05). Samples of the M. longissimus from Brahman cross carcasses had a higher Warner-Bratzler shear force than samples from the other breed crosses (P < 0.05).


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 636
Author(s):  
Natalia Martín ◽  
Nicola Schreurs ◽  
Stephen Morris ◽  
Nicolás López-Villalobos ◽  
Julie McDade ◽  
...  

There is interest in increasing the carcass value of surplus calves born in the dairy industry that are reared for beef production in New Zealand. This experiment evaluated the carcass of Angus and Hereford sires via progeny testing of beef-cross-dairy offspring grown on hill country pasture. Weight and carcass traits were analyzed from 1015 animals and 1000 carcasses of 73 sires. The mean of the progeny group means was 567 kg for live weight at slaughter, 277 kg for carcass weight, 48.9% for dressing-out, 240.3 cm for carcass length, 73.6 cm2 for eye muscle area, 7.4 mm for rib fat depth, 0.91 for marble score, 3.05 for fat color score, 3.01 for meat color score, and 5.62 for ultimate pH. Sire affected (p < 0.05) carcass size and fat traits, but not fat color, meat color, or ultimate pH (p > 0.05). There was a 46 kg increase in carcass weight between the best and worst sires tested. Carcass fat traits were the most variable among sires. The use of genetically superior beef-breed sires over dairy-breed cows has the potential to increase carcass weights from surplus calves born in the dairy industry, while maintaining adequate fat levels and carcass quality.


Sign in / Sign up

Export Citation Format

Share Document