scholarly journals Increasing Fat Deposition Via Upregulates the Transcription of Peroxisome Proliferator-Activated Receptor Gamma in Native Crossbred Chickens

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Supanon Tunim ◽  
Yupin Phasuk ◽  
Samuel E. Aggrey ◽  
Monchai Duangjinda

This study aimed to study the role of PPARs on fat deposition in native crossbred chicken. We studied the growth, abdominal, subcutaneous, and intramuscular fat, and mRNA expression of PPARA and PPARG in adipose and muscle tissues of four chicken breeds (CH breed (100% Thai native chicken), KM1 (50% CH background), KM2 (25% CH background), and broiler (BR)). The result shows that the BR chickens had higher abdominal fat than other breeds (p < 0.05) and the KM2 had an abdominal fat percentage higher than KM1 and CH respectively (p < 0.05). The intramuscular fat of BR was greater than KM1 and CH (p < 0.05). In adipose tissue, PPARA expression was different among the chicken breeds. However, there were breed differences in PPARG expression. Study of abdominal fat PPARG expression showed the BR breed, KM1, and KM2 breed significantly greater (p < 0.05) than CH. In 8 to 12 weeks of age, the PPARG expression of the CH breed is less than (p < 0.05) KM2. Crossbreeding improved the growth of the Thai native breed, there was also a corresponding increase in carcass fatness. However, there appears to be a relationship between PPARG expression and fat deposition traits. therefore, PPARG activity hypothesized to plays a key role in lipid accumulation by up-regulation.

2020 ◽  
Author(s):  
Supanon Tunim ◽  
Yupin Phasuk ◽  
Samuel E. Aggrey ◽  
Monchai Duangjinda

Abstract Background: Crossbreeding using exotic breeds is usually employed to improve the growth characteristics of indigenous chickens. This mating not only provides growth but affect adversely to fat deposition as well. We studied the growth, abdominal, subcutaneous and intramuscular fat and mRNA expression of peroxisome proliferator-activated receptor (PPAR) α and PPARγ in adipose and muscle tissues of four chicken breeds [Chee breed (CH) (100% Thai native chicken), Kaimook e-san1 (KM1; 50% CH background), Kaimook e-san2 (KM2; 25% CH background), and broiler (BR)]. This study was aim to study role of PPARs on fat deposition in native crossbred chicken.Results: The BR chickens had higher abdominal fat than other breeds (P<0.05) and the KM2 had an abdominal fat percentage higher than KM1 and CH respectively (P<0.05). The intramuscular fat (IMF) of BR was greater than KM1 and CH (P<0.05). In adipose tissue, PPARα transcription expression was different among the chicken breeds. However, there were breed differences in PPARγ gene expression. Study of abdominal fat PPARγ gene expression showed the BR breed, KM1, and KM2 breed significantly greater (P<0.05) than CH. In 8 to 12 weeks of age, the result shows that the PPARγ expression of the CH breed is less than (P<0.05) KM2. The result of PPARs expression in muscle tissue was similar result in adipose tissue.Conclusion: Crossbreeding improved the growth of the Thai native breed, there was also a corresponding increase in carcass fatness. However, there appears to be a relationship between PPARγ expression and fat deposition traits. therefore, PPARγ activity plays a key role in lipid accumulation by up-regulation.


Author(s):  
Weixin Zhao ◽  
Liping Guo ◽  
Zhiguo Miao ◽  
Jinzhou Zhang ◽  
Shan Wang

Background: Fat deposition affected meat quality and the suitable amount of intramuscular fat (IMF) can significantly improve the taste of meat, palatability, juicy, tenderness and flavor, thereby enhancing the meat quality in animals. Although, calpastatin (CAST) and peroxisome proliferator-activated receptor-ã (PPARã) could regulate meat quality by altering meat tenderness or IMF content in animals, reports concerning the relationship between CAST, PPARã expression and pork quality is unclear.Methods: A total of twenty 28-day-old purebred weaned Jinhua and Landrace piglets (10 piglets per breed) were divided into two groups according to breed for the feeding trials lasting for 120 days. At the 148 days of age, 3 pigs of each breed were selected to slaughter. Total RNA was extracted from longissimus dorsi and biceps femoris muscle to investigate the differential expression of PPARã and CAST in muscle tissues of different breed pigs by RT-PCR methods, as well as their relationship with IMF and carcass lean content.Result: These results suggested that PPARã is an important effector for regulating fat deposition in pigs, which was correlated with IMF and carcass lean content of pigs. This data would provide a scientific basis for the regulation of pork quality.


2019 ◽  
Vol 20 (5) ◽  
pp. 1153 ◽  
Author(s):  
Nunzia D’Onofrio ◽  
Gorizio Pieretti ◽  
Feliciano Ciccarelli ◽  
Antonio Gambardella ◽  
Nicola Passariello ◽  
...  

: The role of sirtuin 6 (SIRT6) in adipose abdominal tissue of pre-diabetic (pre-DM) patients is poorly known. Here, we evaluated SIRT6 expression in visceral abdominal fat of obese pre-diabetic patients and the potential effects of metformin therapy. Results indicated that obese pre-DM subjects showed low SIRT6 protein expression and high expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), peroxisome proliferator-activated receptor gamma (PPAR-γ), and sterol regulatory element-binding transcription factor 1 (SREBP-1). Obese pre-DM patients showed high values of glucose, insulin resistance (HOMA-IR), C reactive protein (CRP), nitrotyrosine, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), and low values of insulin (p < 0.05). Of note, abdominal fat tissue of obese pre-DM patients treated with metformin therapy presented higher SIRT6 expression and lower NF-κB, PPAR-γ, and SREBP-1 expression levels compared to pre-DM control group. Collectively, results show that SIRT6 is involved in the inflammatory pathway of subcutaneous abdominal fat of obese pre-DM patients and its expression responds to metformin therapy.


2016 ◽  
Vol 133 (5) ◽  
pp. 422-428 ◽  
Author(s):  
L. Leng ◽  
H. Zhang ◽  
J.Q. Dong ◽  
Z.P. Wang ◽  
X.Y. Zhang ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Siyuan Xing ◽  
Ranran Liu ◽  
Guiping Zhao ◽  
Lu Liu ◽  
Martien A. M. Groenen ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Jose T Muratalla ◽  
Samuel M Lee ◽  
Pablo Remon-Ruiz ◽  
Gregory H Norris ◽  
Jose Cordoba-Chacon

Abstract Pparg is a nuclear receptor that regulates glucose and lipid metabolism. Thiazolidinediones (TZD) are PPARG agonists that may reduce hepatic steatosis through their effects in adipose tissue. However, some studies suggest that expression and activation of hepatocyte Pparg promotes steatosis. In this study, we have assessed the relevance of hepatocyte Pparg, and its TZD-mediated activation in the development and/or reduction of steatosis, with adult-onset hepatocyte-specific Pparg knockout (PpargΔHep) mice. We reported that a single iv injection of AAV8-TBG-Cre in Pparg-floxed mice, knocked out hepatocyte Pparg expression (PpargΔHep mice), and that prevented diet-induced steatosis. In this study, a group of 5 wk-old Pparg-floxed mice were fed a low fat (LF) or a high fat (HF) diet for 7 weeks before generating control and PpargΔHep mice. Then, half of the HF-fed mice in each group were switched to a HF diet supplemented with the TZD Rosiglitazone maleate, for 5 weeks. HF diet induced mild obesity (36.8 +/- 1.4 g of body weight [BW]), while TZD slightly increased BW (41.3 +/- 1.3 g) and insulin sensitivity. Liver weight was not altered in HF-fed mice with or without TZD, and we did not observe any effect induced by PpargΔHep. Due to the mild phenotype observed in this cohort, we generated a 2nd cohort adjusting for age and length of diet. Briefly, 10 wk-old Pparg-floxed mice were fed a LF or HF diet for 16 weeks before generating control and PpargΔHep mice. Then, half of the HF-fed mice in each group were switched to a HF diet supplemented with Rosiglitazone maleate for 7 weeks. In this group of mice, HF diet induced obesity (50.1 +/- 1.05 g BW), and increased liver weight independent of hepatic Pparg expression. TZD treatment exacerbated obesity (62.4 +/- 1.2g BW) and adiposity, but increased insulin sensitivity as compared to mice fed a HF diet without TZD. Interestingly, PpargΔHep mice fed a HF diet with TZD showed enlarged subcutaneous white and brown adipose tissue weight, and a dramatic reduction in liver weight and steatosis as compared to obese control mice treated with TZD. The expression of hepatic Cd36, Cidea, Cidec, and Fabp4 was increased by TZD in a Pparg-dependent manner in HF-fed mice. Altogether, this data suggest that hepatocyte Pparg expression may offset the antisteatogenic actions of TZD in mice with severe obesity. In obese and insulin resistant individuals, TZD-mediated activation of hepatocyte Pparg may exacerbate steatosis.


Author(s):  
Lin Xiong ◽  
Jie Pei ◽  
Xiaoyun Wu ◽  
Qudratullah Kalwar ◽  
Ping Yan ◽  
...  

Fat deposition in yaks plays an important part in survival, multiplication, and meat quality. In this work, the characteristic of fat deposition in male yaks (MYs) and female yaks (FYs) and the regulations of gender to yak fat deposition were explored by mRNA-Seq and non-targeted metabolomics analyses. FYs possessed a higher body fat rate (BFR) of visceral fat, fat content in longissimus dorsi (LD) and liver, and subcutaneous fat thickness (p &lt; 0.05). The fat and cholesterol synthesis in liver and the fat transport in FY blood increased. The fat metabolism in yaks is the combined effect of carbohydrate, fatty acid, and amino acid metabolism by tricarboxylic acid (TCA) cycle, and an increase of triglyceride (TG) synthesis was accompanied by an increase of steroid synthesis. The high levels of myo-inositol and cortisol (COR) (p &lt; 0.01) activated the calcium signaling in FY subcutaneous fat, followed by the increase of adipocyte secretion, and resulted in more leptin (LEP) secretion (p &lt; 0.01). Then peroxisome proliferator-activated receptor (PPAR) signaling was activated by the focal adhesions and ECM–receptor interaction. Finally, the TG and steroid synthesis increased by the expression regulation of ME1, SCD, ELOVL6, DGAT2, DBI, LPL, CPT1, PLIN1, LIPA, DHCR24, and SQLE gene. The above genes can be considered as the candidate genes for yak with higher fat amount in molecular breeding in the future. This study can provide a theoretical basis for improving the meat quality and breeding of yaks.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1674 ◽  
Author(s):  
Seiichiro Aoe ◽  
Chiemi Yamanaka ◽  
Kotone Koketsu ◽  
Machiko Nishioka ◽  
Nobuteru Onaka ◽  
...  

Paramylon (PM), a type of β-glucan, functions like dietary fiber, which has been suggested to exert a protective effect against obesity. We evaluated the potential beneficial effects of PM powder on obesity in mice. Male C57BL/6J mice were fed a high-fat diet supplemented with either 2.5 or 5% PM powder, extracted from Euglena gracilis, for 74 days. Growth parameters, abdominal fat content, serum biochemical markers, hepatic lipid accumulation and hepatic mRNA expression were measured. Dietary supplementation with PM resulted in decreased food efficiency ratios and abdominal fat accumulation. Dose-dependent decreases were observed in postprandial glucose levels, serum low-density lipoprotein (LDL)-cholesterol, and serum secretary immunoglobulin A (sIgA) concentrations. PM supplementation increased peroxisome proliferator-activated receptor α (PPARα) mRNA expression in the liver which is suggested to induce β-oxidation through activation of acyl-coenzyme A oxidase (ACOX), carnitine palmitoyltransferase (CPT) and fatty acid transport protein 2 (FATP2) mRNA expression. Changes in fatty acid metabolism may improve lipid and glucose metabolism. In conclusion, a preventive effect against obesity was observed in mice given a PM-enriched diet. The mechanism is suggested to involve a reduction in both serum LDL-cholesterol levels and the accumulation of abdominal fat, in addition to an improvement in postprandial glucose concentration.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 739
Author(s):  
Zengkui Lu ◽  
Jianbin Liu ◽  
Jilong Han ◽  
Bohui Yang

Bone morphogenetic protein 2 (BMP2) is strongly selected in both fat-tailed and thin-tailed sheep and may be a candidate gene for sheep tail type selection. However, the mechanism of action of BMP2 in sheep tail fat deposition remains unclear. This study investigated genetic variation and haplotype combinations of the BMP2 gene in sheep with different tail types, aiming to reveal the molecular mechanism of BMP2 in sheep tail fat deposition. We detected a total of three single nucleotide polymorphisms (SNPs) (g.48401619 T > A, g.48401272 C > A, and g.48401136 C > T) among 533 sheep. The alleles and genotype frequencies of these SNPs were in Hardy–Weinberg equilibrium and showed significant correlations with tail length. Linkage disequilibrium existed between the g.48401272 C > A and g.48401136 C > T sites, where CACT was the predominant genotype. At the cellular level, the expression levels of peroxisome proliferator-activated receptor gamma (PPARγ) and lipoprotein lipase (LPL) were upregulated after BMP2 overexpression; there were significantly higher levels of PPARγ than controls at 0 d and 1 d, and of LPL than controls at 1 d and 7 d. These results indicate that the BMP2 gene may participate in sheep tail fat deposition and could be used for molecular-marker-assisted selection of sheep tail type.


Sign in / Sign up

Export Citation Format

Share Document