scholarly journals Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis)

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1692
Author(s):  
Alejandro Suárez-Pérez ◽  
Juan Alberto Corbera ◽  
Margarita González-Martín ◽  
María Teresa Tejedor-Junco

The presence of multidrug-resistant (MDR) Escherichia coli in cloacal samples from Canarian Egyptian vultures was investigated. Samples were obtained from chicks (n = 65) and from adults and immature birds (n = 38). Antimicrobial susceptibility to 16 antibiotics included in 12 different categories was determined for 103 E. coli isolates. MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories. Forty-seven different resistance phenotypes were detected: 31 MDR (41 isolates) and 16 non-MDR (62 isolates). One isolate was resistant to all 12 antimicrobial categories and 2 phenotypes included resistance to 9 antimicrobial categories. Imipenem resistance was included in five MDR phenotypes, corresponding to five different isolates. Statistically significant differences in prevalence of MDR-phenotypes were found between chicks in nests and the rest of the animals, probably due to the shorter exposure time of chicks to antimicrobials. The main risk derived from MDR bacteria in scavengers is that it threatens the treatment of wild animals in rescue centres and could be transferred to other animals in the facilities. In addition to this, it could pose a health risk to veterinarians or other staff involved in wildlife protection programmes.

2010 ◽  
Vol 59 (5) ◽  
pp. 592-598 ◽  
Author(s):  
Justine S. Gibson ◽  
Rowland N. Cobbold ◽  
Darren J. Trott

Multidrug-resistant (MDR) Escherichia coli causes extraintestinal infections in both humans and animals. This study aimed to determine whether MDR E. coli isolates cultured from extraintestinal infections in several animal species were clonal and crossed host-species boundaries, as suggested by initial characterization of a subset of canine and human isolates, or whether they represented a diverse group of host-specific strains. Isolates were obtained either from The University of Queensland Veterinary Diagnostic Laboratory or from an independent diagnostic laboratory between October 1999 and December 2007. Ninety-six MDR E. coli isolates cultured from extraintestinal clinical infections in 55 animals comprising dogs (n=45), cats (n=5), horses (n=4) and a koala (n=1) were analysed by phylogenetic grouping, antimicrobial susceptibility testing and PFGE. The isolates were cultured from the urinary tract (n=61), reproductive tract (n=11), wounds (n=11), surgical site infections (n=4) and other sites (n=9). Isolates from the same E. coli phylogenetic group with 100 % PFGE similarity and the same antimicrobial susceptibility pattern were considered to be repeat clones and excluded from further analysis. Three of the four E. coli phylogenetic groups (A, n=19; B1, n=8; and D, n=49) were represented. Analysis of PFGE similarity identified clusters of related phylogenetic group A isolates [clonal group (CG) 1] and group D isolates (CG2 and CG3), with the remainder of the isolates demonstrating diversity. The majority of CG2 isolates contained a plasmid-borne AmpC β-lactamase, imparting resistance to cefoxitin and third-generation cephalosporins, and were obtained between 2000 and 2003. CG3 isolates were sensitive to these antimicrobial agents and appeared to replace CG2 isolates as the dominant clones from 2003 to 2007. Apart from several canine and feline isolates that demonstrated clonality, PFGE profiles tended to be divergent across species. Whilst MDR E. coli isolates from extraintestinal infections in different animal species are diverse, some dominant CGs may persist over several years.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Geresu Minda Asfaw ◽  
Regassa Shimelis

Escherichia coli O157 : H7 (E. coli O157 : H7) has been found to be the major cause of food-borne diseases and a serious public health problem in the world, with an increasing concern for the emergence and spread of antimicrobial-resistant strains. Hitherto, little is known about the carriage of E. coli O157 : H7 and its antimicrobial susceptibility profile in the food of animal origin in Ethiopia. This study aimed to determine the occurrence and multidrug resistance profile of E. coli O157 : H7 from food of animal origin at different catering establishments in the selected study settings of Arsi Zone. One hundred ninety-two animal origin food items, namely, raw/minced meat (locally known as “Kitfo,” “Kurt,” and “Dulet”), raw milk, egg sandwich, and cream cake samples were collected and processed for microbiological detection of E. coli O157 : H7. Out of 192 samples, 2.1% (4/192) were positive for E. coli O157 : H7. Two E. coli O157 : H7 isolates were obtained from “Dulet” (6.3%) followed by “Kurt” (3.1%, 1/32) and raw milk (3.1%, 1/32), whereas no isolate was obtained from “Kitfo,” egg sandwich, and cream cake samples. Of the 4 E. coli O157 : H7 isolates subjected to 10 panels of antimicrobial discs, 3 (75%) were highly resistant to kanamycin, streptomycin, and nitrofurantoin. Besides, all the isolates displayed multidrug resistance phenotypes, 3 to 5 antimicrobial resistance, amid kanamycin, streptomycin, nitrofurantoin, tetracycline, and chloramphenicol. The occurrence of multidrug-resistant E. coli O157 : H7 isolates from foods of animal origin sampled from different catering establishments reveals that the general sanitary condition of the catering establishments, utensils used, and personnel hygienic practices did not comply with the recommended standards. Thus, this finding calls for urgent attention toward appropriate controls and good hygienic practices in different catering establishments dealing with consuming raw/undercooked foods of animal origin.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aklilu Feleke Haile ◽  
Silvia Alonso ◽  
Nega Berhe ◽  
Tizeta Bekele Atoma ◽  
Prosper N. Boyaka ◽  
...  

Escherichia coli O157:H7 is an important foodborne pathogen but largely under investigated in Africa. The objectives of this study were to estimate the prevalence and pattern of antimicrobial resistance of E. coli O157:H7 in lettuce in Addis Ababa, Ethiopia. A total of 390 retail lettuce samples were collected across the 10 subcities of Addis Ababa. E. coli O157:H7 was isolated and identified following ISO-16654:2001 standard. The isolates were further tested for antimicrobial susceptibility to 13 antimicrobials using the Kirby–Bauer disk diffusion method. Out of the 390 lettuce samples examined, two (0.51%) carried E. coli O157:H7. The antimicrobial susceptibility pattern of strains showed resistance to ampicillin (100%) and tetracycline (50.0%). One of the two isolates was multidrug resistant to two antimicrobials tested. The results of this study demonstrate the presence of drug-resistant E. coli O157:H7 in lettuce in markets in Addis Ababa. Despite the low prevalence, its presence in a product that is eaten raw highlights potential public health risk in the area associated with this pathogen.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Magdalena Rzewuska ◽  
Michał Czopowicz ◽  
Magdalena Kizerwetter-Świda ◽  
Dorota Chrobak ◽  
Borys Błaszczak ◽  
...  

The antimicrobial susceptibility ofEscherichia coliisolates associated with various types of infections in dogs and cats was determined. The studied isolates were most frequently susceptible to fluoroquinolones and the extended-spectrum cephalosporins (ESCs), antimicrobials commonly used in treatment of infections in companion animals. However, an increase in the percentage of strains resistant toβ-lactam antibiotics including ESCs was noted between January 2007 and December 2013. The frequency of multidrug-resistant (MDR)E. coliisolation (66.8% of isolates) is alarming. Moreover, the statistically significant increase of the percentage of MDR isolates was observed during the study period. No difference in the prevalence of multidrug resistance was found between bacteria causing intestinal and extraintestinal infections and between canine and feline isolates. NonhemolyticE. coliisolates were MDR more often than hemolytic ones. Our study showed the companion animals in Poland as an important reservoir of MDR bacteria. These results indicate that continuous monitoring of canine and felineE. coliantimicrobial susceptibility is required. Furthermore, introduction and application of recommendations for appropriate use of antimicrobials in small animal practice should be essential to minimize the emergence of multidrug resistance amongE. coliin companion animals.


2019 ◽  
Vol 70 (3) ◽  
pp. 1661
Author(s):  
F. KARADAL ◽  
N. ERTAS ONMAZ ◽  
H. HIZLISOY ◽  
S. AL ◽  
N. TELLI ◽  
...  

In this study, pathogenic Escherichia coli serotypes (E. coli O157:H7, O26, O111) and their molecular proximity and antimicrobial susceptibility were investigated in RTE foods. A total of 240 samples; consist of 105 stuffed mussel, 56 meatless cig kofte, 54 Russian salad, 25 cheese halva, were analyzed. The conventional culture and serotyping methods for determination of the organisms were performed and further confirmation by PCR was carried out. Confirmed E. coli O157 isolates were genotyped by the enterobacterial repetitive intergenic consensus(ERIC)-PCR. Antibacterial susceptibility testing of the isolates was performed by disc diffusion method. E. coli was detected in 7 (2.9 %) of 240 samples, including 3 (5.5%) Russian salad, 3 (2.8%) stuffed mussel, 1 (4 %) cheese halva. Two isolates from Russian salad, 1 from stuffed mussel and 1 from cheese halva were identified as E. coli O157 . In addition, stuffed mussel isolate was found to carry stx1 ve hlyA genes whereas one Russian salad isolate carried the stx1 gene. E. coli isolates were found to be resistant to amoxycillin/clavulonic acid, gentamicin and ciprofloxacin, at the rate of 29%, 14% and 29 %, respectively. Only one (14 %) isolate from stuffed mussel was classified as multidrug resistant to three antimicrobials. Furthermore, the isolates, related to O157 and O157:H7, presented different ribotypes in this study. The results provide useful data for the development of public health policy concerning the potential presence of pathogenic antimicrobial resistant E. coli serotypes in RTE foods. Strict surveillance of RTE foods at retail points for emerging pathogens, their antimicrobial resistance patterns and the potential likelihood of cross-contamination is required.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Mustapha ◽  
Yusuf Audu ◽  
Kingsley Uwakwe Ezema ◽  
Jafar Umar Abdulkadir ◽  
Jallailudeen Rabana Lawal ◽  
...  

AbstractDiarrhea caused by multidrug-resistant Escherichia coli (E. coli) is an important and common problem in companion animals, especially dogs. Moreover, these dogs may serve as a reservoir of pathogenic strains of E. coli that may cause enteric and extra-intestinal infections in humans and other animals. This study was conducted to investigate the antibiotic susceptibility pattern of E. coli isolates from diarrheic dogs in Maiduguri Metropolis, Borno State, Nigeria. In fecal samples of 200 dogs with diarrhea, 147 E. coli strains (73.5%) were isolated and characterized by the standard bacteriological techniques (culture, biochemical tests, and antimicrobial susceptibility testing). Out of the 147 positive isolates, 45, 50, and 52 were from Elkanemi Park, Magaram, and Sabon gari wards respectively. The isolates show 100% resistance to chloramphenicol, cefuroxime, and ceftriaxone, 96.6% to amoxicillin, and 95.9% to gentamicin, while all (100%) were susceptible to ciprofloxacin. All the isolates showed multiple antimicrobial resistance. The result of the current study showed that dogs in Maiduguri are important reservoirs of multidrug-resistant E. coli. Therefore, it is important to adopt and apply guidelines for the correct use of antimicrobials in small animal practice to reduce the emergence of multidrug resistance among E. coli in companion animals.


2021 ◽  
Vol 22 (11) ◽  
pp. 5905
Author(s):  
Olivia M. Grünzweil ◽  
Lauren Palmer ◽  
Adriana Cabal ◽  
Michael P. Szostak ◽  
Werner Ruppitsch ◽  
...  

Marine mammals have been described as sentinels of the health of marine ecosystems. Therefore, the aim of this study was to investigate (i) the presence of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Enterobacterales, which comprise several bacterial families important to the healthcare sector, as well as (ii) the presence of Salmonella in these coastal animals. The antimicrobial resistance pheno- and genotypes, as well as biocide susceptibility of Enterobacterales isolated from stranded marine mammals, were determined prior to their rehabilitation. All E. coli isolates (n = 27) were screened for virulence genes via DNA-based microarray, and twelve selected E. coli isolates were analyzed by whole-genome sequencing. Seventy-one percent of the Enterobacterales isolates exhibited a multidrug-resistant (MDR) pheno- and genotype. The gene blaCMY (n = 51) was the predominant β-lactamase gene. In addition, blaTEM-1 (n = 38), blaSHV-33 (n = 8), blaCTX-M-15 (n = 7), blaOXA-1 (n = 7), blaSHV-11 (n = 3), and blaDHA-1 (n = 2) were detected. The most prevalent non-β-lactamase genes were sul2 (n = 38), strA (n = 34), strB (n = 34), and tet(A) (n = 34). Escherichia coli isolates belonging to the pandemic sequence types (STs) ST38, ST167, and ST648 were identified. Among Salmonella isolates (n = 18), S. Havana was the most prevalent serotype. The present study revealed a high prevalence of MDR bacteria and the presence of pandemic high-risk clones, both of which are indicators of anthropogenic antimicrobial pollution, in marine mammals.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 406
Author(s):  
Zuhura I. Kimera ◽  
Fauster X. Mgaya ◽  
Gerald Misinzo ◽  
Stephen E. Mshana ◽  
Nyambura Moremi ◽  
...  

We determined the phenotypic profile of multidrug-resistant (MDR) Escherichia coli isolated from 698 samples (390 and 308 from poultry and domestic pigs, respectively). In total, 562 Enterobacteria were isolated. About 80.5% of the isolates were E. coli. Occurrence of E. coli was significantly higher among domestic pigs (73.1%) than in poultry (60.5%) (p = 0.000). In both poultry and domestic pigs, E. coli isolates were highly resistant to tetracycline (63.5%), nalidixic acid (53.7%), ampicillin (52.3%), and trimethoprim/sulfamethoxazole (50.9%). About 51.6%, 65.3%, and 53.7% of E. coli were MDR, extended-spectrum beta lactamase-producing enterobacteriaceae (ESBL-PE), and quinolone-resistant, respectively. A total of 68% of the extended-spectrum beta lactamase (ESBL) producers were also resistant to quinolones. For all tested antibiotics, resistance was significantly higher in ESBL-producing and quinolone-resistant isolates than the non-ESBL producers and non-quinolone-resistant E. coli. Eight isolates were resistant to eight classes of antimicrobials. We compared phenotypic with genotypic results of 20 MDR E. coli isolates, ESBL producers, and quinolone-resistant strains and found 80% harbored blaCTX-M, 15% aac(6)-lb-cr, 10% qnrB, and 5% qepA. None harbored TEM, SHV, qnrA, qnrS, qnrC, or qnrD. The observed pattern and level of resistance render this portfolio of antibiotics ineffective for their intended use.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 265
Author(s):  
Peter Kotsoana Montso ◽  
Caven Mguvane Mnisi ◽  
Collins Njie Ateba ◽  
Victor Mlambo

Preslaughter starvation and subacute ruminal acidosis in cattle are known to promote ruminal proliferation of atypical enteropathogenic Escherichia coli strains, thereby increasing the risk of meat and milk contamination. Using bacteriophages (henceforth called phages) to control these strains in the rumen is a potentially novel strategy. Therefore, this study evaluated the viability of phages and their efficacy in reducing E. coli O177 cells in a simulated ruminal fermentation system. Fourteen phage treatments were allocated to anaerobic serum bottles containing a grass hay substrate, buffered (pH 6.6–6.8) bovine rumen fluid, and E. coli O177 cells. The serum bottles were then incubated at 39 °C for 48 h. Phage titres quadratically increased with incubation time. Phage-induced reduction of E. coli O177 cell counts reached maximum values of 61.02–62.74% and 62.35–66.92% for single phages and phage cocktails, respectively. The highest E. coli O177 cell count reduction occurred in samples treated with vB_EcoM_366B (62.31%), vB_EcoM_3A1 (62.74%), vB_EcoMC3 (66.67%), vB_EcoMC4 (66.92%), and vB_EcoMC6 (66.42%) phages. In conclusion, lytic phages effectively reduced E. coli O177 cells under artificial rumen fermentation conditions, thus could be used as a biocontrol strategy in live cattle to reduce meat and milk contamination in abattoirs and milking parlours, respectively.


Children ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 597
Author(s):  
Luca Pierantoni ◽  
Laura Andreozzi ◽  
Simone Ambretti ◽  
Arianna Dondi ◽  
Carlotta Biagi ◽  
...  

Urinary tract infections (UTIs) are among the most common bacterial infections in children, and Escherichia coli is the main pathogen responsible. Several guidelines, including the recently updated Italian guidelines, recommend amoxicillin-clavulanic acid (AMC) as a first-line antibiotic therapy in children with febrile UTIs. Given the current increasing rates of antibiotic resistance worldwide, this study aimed to investigate the three-year trend in the resistance rate of E. coli isolated from pediatric urine cultures (UCs) in a metropolitan area of northern Italy. We conducted a retrospective review of E. coli-positive, non-repetitive UCs collected in children aged from 1 month to 14 years, regardless of a diagnosis of UTI, catheter colonization, urine contamination, or asymptomatic bacteriuria. During the study period, the rate of resistance to AMC significantly increased from 17.6% to 40.2% (p < 0.001). Ciprofloxacin doubled its resistance rate from 9.1% to 16.3% (p = 0.007). The prevalence of multidrug-resistant E. coli rose from 3.9% to 9.2% (p = 0.015). The rate of resistance to other considered antibiotics remained stable, as did the prevalence of extended spectrum beta-lactamases and extensively resistant E. coli among isolates. These findings call into question the use of AMC as a first-line therapy for pediatric UTIs in our population, despite the indications of recent Italian guidelines.


Sign in / Sign up

Export Citation Format

Share Document