scholarly journals Biofilm and Spore Formation of Clostridium perfringens and Its Resistance to Disinfectant and Oxidative Stress

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Wen Si Hu ◽  
Dong U Woo ◽  
Yang Jae Kang ◽  
Ok Kyung Koo

Clostridium perfringens is a major human pathogen that causes gastroenteritis via enterotoxin production and has the ability to form spores and biofilms for environmental persistence and disease transmission. This study aimed to compare the disinfectant and environmental resistance properties of C. perfringens vegetative cells and spores in planktonic and sessile conditions, and to examine the nucleotide polymorphisms and transcription under sessile conditions in C. perfringens strains isolated from meat. The sporulation rate of sessile C. perfringens TYJAM-D-66 (cpe+) was approximately 19% at day 5, while those of CMM-C-80 (cpe-) and SDE-B-202 (cpe+) were only 0.26% and 0.67%, respectively, at day 7. When exposed to aerobic conditions for 36 h, TYJAM-D-66, CMM-C-80, and SDE-B-202 vegetative cells showed 1.70 log, 5.36 log, and 5.67 log reductions, respectively. After treatment with sodium hypochlorite, the survival rates of TYJAM-D-66 vegetative cells (53.6%) and spores (82.3%) in biofilms were higher than those of planktonic cells (9.23%). Biofilm- and spore-related genes showed different expression within TYJAM-D-66 (–4.66~113.5), CMM-C-80 (–3.02~2.49), and SDE-B-202 (–5.07~2.73). Our results indicate the resistance of sessile cells and spores of C. perfringens upon exposure to stress conditions after biofilm formation.

1979 ◽  
Vol 42 (11) ◽  
pp. 872-876 ◽  
Author(s):  
J. RITTER ◽  
J. O'LEARY ◽  
B. E. LANGLOIS

Staphylococcus aureus, Clostridium perfringens. Salmonella choleraesuis, and Salmonella typhimurium were inoculated (108 cells or spores) into two slow cookers containing green bean casserole, baked navy beans, chicken cacciatore, barbecued ribs or pork pot roast, and their fate determined after cooking. Heating patterns also were determined at three positions inside the two cookers. None of the foods cooked in either of the slow cookers contained detectable levels of S. aureus or salmonellae. The similarity between C. perfringens vegetative and spore counts indicate that only spores were present in the cooked foods. Except for the green bean casserole cooked using a low temperature setting, cooking resulted in a 0.44–1.67 and 0.36–1.54 log count reduction, respectively, of vegetative cells and spores of C. perfringens. Counts of vegetative cells and spores after cooking the green bean casserole were approximately .18 and .30 log counts higher than the uncooked counts. The mean times for the coldest areas in Cooker A to reach 50 C were 2.57 and 0.97 h, respectively, for the low (80 watts) and high (160 watts) temperature settings. The mean times for the coldest areas in Cooker B (removable liner) to reach 50 C were 2.35 and 0.52 h for the low (130 watts) and high (260 watts) temperature settings, respectively. Results suggest that when the recommended quantities of ingredients are used and the proper cooking procedure followed, foods prepared in the slow cookers studied do not present a health hazard.


Abstract The use of frozen semen lowers the risk of disease transmission, eliminates geographical limitations and supports the implementation of genetic resource protection programs. However, due to the very rare use of frozen semen from Hutsul stallions, their genetic material is not secured in sperm banks, and very little information is available about their semen, including its suitability for cryopreservation, and sperm survival rates after thawing. The aim of this study was to analyse basic parameters such as sperm motility, vitality and morphology in diluted-stored and post-thawed Hutsul semen, using a CASA system. There were no differences in sperm motility (P = 0.3372) or morphology between the groups, although the progressive motility was higher in thawed semen (P = 0.0151), while the sperm vitality was higher in diluted-stored semen (P = 0.00517). This study demonstrates that semen from Hutsul horses is suitable for cryopreservation, thus supporting the creation of a sperm bank as a genetic reserve for representatives of this breed.


1964 ◽  
Vol 12 (3) ◽  
pp. 273-276 ◽  
Author(s):  
James C. Canada ◽  
Dorothy H. Strong ◽  
Lelia G. Scott

1994 ◽  
Vol 57 (5) ◽  
pp. 393-398 ◽  
Author(s):  
V. K. JUNEJA ◽  
B. S. MARMER ◽  
A. J. MILLER

Growth of Clostridium perfringens in aerobic-and anaerobic-(vacuum) packaged cooked ground beef was investigated. Autoclaved ground beef was inoculated with ~3.0-log10 CFU/g of C. perfringens, packaged and stored at various temperatures. Vegetative cells and heat-resistant spores were enumerated by plating unheated and heated (75°C for 20 min) meat samples on tryptose-sulfite-cycloserine agar. Clostridium perfringens grew to >7 logs within 12 h at 28, 37 and 42°C under anaerobic atmosphere and at 37 and 42°C under aerobic conditions. At 28°C under aerobic conditions, growth was relatively slow and total viable count increased to >6 logs within 36 h. Similarly, growth at 15°C in air was both slower and less than under vacuum. Regardless of packaging, the organism either declined or did not grow at 4, 8 and 12°C. Spores were not found at <12°C. Spores were detected as early as 8 h at 42°C under anaerobic conditions, but in general, the type of atmosphere had little influence on sporulation at ≥28°C. Temperature abuse (28°C storage) of refrigerated products for 6 h will not permit C. perfringens growth. However, cyclic and static temperature abuse of such products for relatively long periods may lead to high and dangerous numbers of organisms. Reheating such products to an internal temperature of 65°C before consumption would prevent food poisoning since the vegetative cells were killed.


Author(s):  
Ju-Pi Li ◽  
Hsien-Cheng Huang ◽  
Po-Jen Yang ◽  
Chien-Yuan Chang ◽  
Yu-Hua Chao ◽  
...  

Fibroblast growth factor receptor 4 (FGFR4) is involved in multiple physiological and pathological processes. Several genetic variants of FGFR4 have been shown to be associated with tumor progression in many cancers. However, its association, such as genetic variants and expression levels, with lung cancer is controversial. The present study examined the relationship between four single-nucleotide polymorphisms (SNPs; rs2011077 T/C, rs351855 G/A, rs7708357 G/A, and rs1966265 A/G) of FGFR4 and the risk of lung adenocarcinoma with the epidermal growth factor receptor (EGFR) mutation status in a Taiwanese cohort. The results demonstrated that FGFR4 rs2011077 (odds ratio (OR) = 0.348, 95% confidence interval (CI) = 0.136–0.891, p = 0.024), and rs351855 (OR = 0.296, 95% CI = 0.116–0.751, p = 0.008) showed an inverse association with distant metastasis in wild-type EGFR lung adenocarcinoma. Furthermore, a database analysis using The Cancer Genome Atlas revealed that the higher FGFR4 expression level was correlated with poor survival rates in wild-type EGFR lung adenocarcinoma. In conclusion, the data suggest that FGFR4 SNPs may help in identifying patient subgroups at low-risk for tumor metastasis, among carriers of lung adenocarcinoma bearing wild-type EGFR.


1997 ◽  
Vol 60 (8) ◽  
pp. 998-1000 ◽  
Author(s):  
NORMA L. HEREDIA ◽  
GERARDO A. GARCÍA ◽  
RAMIRO LUÉVANOS ◽  
RONALD G. LABBÉ ◽  
J. SANTOS GARCÍA-ALVARADO

The degree of heat resistance conferred on Clostridium perfringens by a heat shock, the kinetics of this development, and its duration were determined. A sublethal heat shock at 55°C for 30 min increased the heat tolerance of vegetative cells at least two- to threefold. The acquired tolerance was maintained for 2 h after the heat shock treatment. Heat shock applied for the first hour of incubation produced spores more tolerant to heat than the spores of the control. Acquired thermotolerance is of importance in the case of this organism because of its inherently high optimal growth temperature.


1976 ◽  
Vol 59 (3) ◽  
pp. 606-612
Author(s):  
Stanley M Harmon

Abstract A collaborative study was conducted in 10 laboratories to evaluate the performance of a new method for the enumeration of vegetative cells of Clostridium perfringens in foods. Results obtained by the new method were compared with results from the official first action method, 46.049–46.053. Per cent recoveries of 4 C. perfringens strains from inoculated roast beef samples were higher and more consistent in tryptose-sulfite-cycloserine (TSC) agar with or without added egg yolk than in sulfitepolymyxin-sulfadiazine (SPS) agar, specified in the official first action method. The confirmatory technique utilized in the new method was also found to be more reliable than the technique described in the official first action method. Based on the collaborative results, the new method with TSC agar for enumeration and a modified motility-nitrate medium together with a lactose-gelatin medium for confirmation of C. perfringens has been adopted as official first action to replace 46.049–46.053.


2004 ◽  
Vol 67 (2) ◽  
pp. 342-346 ◽  
Author(s):  
JOHN S. NOVAK ◽  
JAMES T. C. YUAN

Ozone treatment of beef surfaces enhanced the effectiveness of cooking temperatures ranging from 45 to 75°C against enterotoxin-producing strains of Clostridium perfringens. Vegetative cells on beef surfaces at an initial concentration of 5.59 ± 0.17 log CFU/g were reduced significantly (P < 0.05) to 4.09 ± 0.72 log CFU/g and 3.50 ± 0.90 log CFU/g after combined treatments with aqueous ozone (5 ppm) and subsequent heating at 45 and 55°C, respectively. Spores on the beef surface were likewise significantly reduced from an initial concentration of 2.94 ± 0.37 log spores per g to 2.07 ± 0.38 log spores per g and 1.70 ± 0.37 log spores per g after the combined treatment with aqueous ozone (5 ppm) and subsequent heating at 55 and 75°C, respectively. Fluorescent nucleic acid stains were used with confocal fluorescence microscopy to show that spores remaining attached to the meat were protected from treatment-specific injury. This study provides evidence for the decreased resistance of both vegetative cells and spores of C. perfringens with ozone treatment that is followed by heat treatment at temperatures that would not otherwise be as effective, thus lowering the requirements for cooking beef while maintaining a margin of safety.


mBio ◽  
2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Menglin Ma ◽  
Jorge Vidal ◽  
Juliann Saputo ◽  
Bruce A. McClane ◽  
Francisco Uzal

ABSTRACT Clostridium perfringens vegetative cells cause both histotoxic infections (e.g., gas gangrene) and diseases originating in the intestines (e.g., hemorrhagic necrotizing enteritis or lethal enterotoxemia). Despite their medical and veterinary importance, the molecular pathogenicity of C. perfringens vegetative cells causing diseases of intestinal origin remains poorly understood. However, C. perfringens beta toxin (CPB) was recently shown to be important when vegetative cells of C. perfringens type C strain CN3685 induce hemorrhagic necrotizing enteritis and lethal enterotoxemia. Additionally, the VirS/VirR two-component regulatory system was found to control CPB production by CN3685 vegetative cells during aerobic infection of cultured enterocyte-like Caco-2 cells. Using an isogenic virR null mutant, the current study now reports that the VirS/VirR system also regulates CN3685 cytotoxicity during infection of Caco-2 cells under anaerobic conditions, as found in the intestines. More importantly, the virR mutant lost the ability to cause hemorrhagic necrotic enteritis in rabbit small intestinal loops. Western blot analyses demonstrated that the VirS/VirR system mediates necrotizing enteritis, at least in part, by controlling in vivo CPB production. In addition, vegetative cells of the isogenic virR null mutant were, relative to wild-type vegetative cells, strongly attenuated in their lethality in a mouse enterotoxemia model. Collectively, these results identify the first regulator of in vivo pathogenicity for C. perfringens vegetative cells causing disease originating in the complex intestinal environment. Since VirS/VirR also mediates histotoxic infections, this two-component regulatory system now assumes a global role in regulating a spectrum of infections caused by C. perfringens vegetative cells. IMPORTANCE Clostridium perfringens is an important human and veterinary pathogen. C. perfringens vegetative cells cause both histotoxic infections, e.g., traumatic gas gangrene, and infections originating when this bacterium grows in the intestines. The VirS/VirR two-component regulatory system has been shown to control the pathogenicity of C. perfringens type A strains in a mouse gas gangrene model, but there is no understanding of pathogenicity regulation when C. perfringens vegetative cells cause disease originating in the complex intestinal environment. The current study establishes that VirS/VirR controls vegetative cell pathogenicity when C. perfringens type C isolates cause hemorrhagic necrotic enteritis and lethal enterotoxemia (i.e., toxin absorption from the intestines into the circulation, allowing targeting of internal organs). This effect involves VirS/VirR-mediated regulation of beta toxin production in vivo. Therefore, VirS/VirR is the first identified global in vivo regulator controlling the ability of C. perfringens vegetative cells to cause gas gangrene and, at least some, intestinal infections.


Sign in / Sign up

Export Citation Format

Share Document