scholarly journals Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis

Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1193
Author(s):  
Chris Kenyon

(1) Background: It is unclear what underpins the large global variations in the prevalence of fluoroquinolone resistance in Gram-negative bacteria. We tested the hypothesis that different intensities in the use of quinolones for food-animals play a role. (2) Methods: We used Spearman’s correlation to assess if the country-level prevalence of fluoroquinolone resistance in human infections with Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa was correlated with the use of quinolones for food producing animals. Linear regression was used to assess the relative contributions of country-level quinolone consumption for food-animals and humans on fluoroquinolone resistance in these 4 species. (3) Results: The prevalence of fluoroquinolone resistance in each species was positively associated with quinolone use for food-producing animals (E. coli [ρ = 0.55; p < 0.001], K. pneumoniae [ρ = 0.58; p < 0.001]; A. baumanii [ρ = 0.54; p = 0.004]; P. aeruginosa [ρ = 0.48; p = 0.008]). Linear regression revealed that both quinolone consumption in humans and food animals were independently associated with fluoroquinolone resistance in E. coli and A. baumanii. (4) Conclusions: Besides the prudent use of quinolones in humans, reducing quinolone use in food-producing animals may help retard the spread of fluoroquinolone resistance in various Gram-negative bacterial species.

Author(s):  
Chris Kenyon

BackgroundIt is unclear what underpins the large global variations in the prevalence of fluoroquinolone resistance in gram-negative bacteria. We tested the hypothesis that different intensities in the use of quinolones for food-animals plays a role. MethodsWe used Spearman&rsquo;s correlation to assess if the country-level prevalence of fluoroquinolone resistance in human infections with Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa was correlated with the use of quinolones for food producing animals. Linear regression was used to assess the relative contributions of country-level quinolone consumption for food-animals and humans on fluoroquinolone resistance in these 4 species. ResultsThe prevalence of fluoroquinolone resistance in each species was positively associated with quinolone use for food-producing animals (E. coli [&rho;=0.55; P&lt;0.001], K. pneumoniae [&rho;=0.58; P&lt;0.001]; A. baumanii [&rho;=0.54; P=0.004]; P. aeruginosa [&rho;=0.48; P=0.008]). Linear regression revealed that both quinolone consumption in humans and food animals were independently associated with fluoroquinolone resistance in E. coli and A. baumanii. ConclusionsReducing quinolone use in food-producing animals may help retard the spread of fluoroquinolone resistance in various gram negative bacterial species.


Author(s):  
Chris Kenyon

It is unclear how important it is to reduce fluoroquinolone consumption in the general population to prevent the spread of fluoroquinolone resistance in Neisseria gonorrhoeae (bystander selection). Methods We assessed bystander selection by using Spearman&rsquo;s correlation to assess if the country-level prevalence of fluoroquinolone resistance in N. gonorrhoeae was correlated with the prevalence of fluoroquinolone resistance in four other gram-negative species - Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Results Fluoroquinolone resistance in N. gonorrhoeae was positively associated with homologous resistance in all 4 species - A. baumanii. (&rho;=0.61, P=0.0003, E. coli (&rho;=0.67, P&lt;0.0001), K. pneumoniae (&rho;=0.52, P=0.0004) and P. aeruginosa (&rho;=0.40, P=0.0206). Positive associations were also found between the national prevalence of fluoroquinolone resistance and fluoroquinolone consumption in the general population in the preceding year for 4 of the 5 species. Conclusions Gonococcal fluoroquinolone resistance can be productively viewed as being part of a syndemic of fluoroquinolone resistance. Strengthening antimicrobial stewardship programs may help retard the spread of fluoroquinolone resistance in N. gonorrhoeae.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 875
Author(s):  
Tomasz Bogiel ◽  
Mateusz Rzepka ◽  
Eugenia Gospodarek-Komkowska

Non-fermenting Gram-negative rods are one of the most commonly isolated bacteria from human infections. These microorganisms are typically opportunistic pathogens that pose a serious threat to public health due to possibility of transmission in the human population. Resistance to beta-lactams, due to carbapenemases synthesis, is one of the most important antimicrobial resistance mechanisms amongst them. The aim of this study was to evaluate the usefulness of the Carbapenem Inactivation Method (CIM), and its modifications, for the detection of carbapenemase activity amongst non-fermenting Gram-negative rods. This research involved 81 strains of Gram-negative rods. Of the tested strains, 55 (67.9%) synthesized carbapenemases. For non-fermenting rods, 100% sensitivity and specificity was obtained in the version of the CIM test using imipenem discs and E. coli ATCC 25922 strain. The CIM test allows for differentiation of carbapenems resistance mechanisms resulting from carbapenemase synthesis from other resistance types. It is a reliable diagnostic method for the detection of carbapenemase activity amongst non-fermenting Gram-negative rods. Application of imipenem discs and P. aeruginosa ATCC 27853 reference strain increases CIM results sensitivity, while imipenem discs and E. coli ATCC 25922 strain use maintains full precision of the test for non-fermenting rods.


1993 ◽  
Vol 21 (2) ◽  
pp. 151-155
Author(s):  
Gustaw Kerszman

The toxicity of the first ten MEIC chemicals to Escherichia coli and Bacillus subtilis was examined. Nine of the chemicals were toxic to the bacteria, with the minimal inhibitory concentration (MIC) ranging from 10-3 to 4.4M. The sensitivities of both organisms were similar, but the effect on E. coli was often bactericidal, while it was bacteriostatic for B. subtilis. Digoxin was not detectably toxic to either bacterial species. Amitriptyline and FeSO4 were relatively less toxic to the bacteria than to human cells. For seven chemicals, a highly significant linear regression was established between log MIC in bacteria and log of blood concentration, giving lethal and moderate/mild toxicity in humans, as well as with toxicity to human lymphocytes.


2006 ◽  
Vol 73 (1) ◽  
pp. 156-163 ◽  
Author(s):  
Ashish A. Sawant ◽  
Narasimha V. Hegde ◽  
Beth A. Straley ◽  
Sarah C. Donaldson ◽  
Brenda C. Love ◽  
...  

ABSTRACT A study was conducted to understand the descriptive and molecular epidemiology of antimicrobial-resistant gram-negative enteric bacteria in the feces of healthy lactating dairy cattle. Gram-negative enteric bacteria resistant to ampicillin, florfenicol, spectinomycin, and tetracycline were isolated from the feces of 35, 8, 5, and 42% of 213 lactating cattle on 74, 39, 9, 26, and 82% of 23 farms surveyed, respectively. Antimicrobial-resistant gram-negative bacteria accounted for 5 (florfenicol) to 14% (tetracycline) of total gram-negative enteric microflora. Nine bacterial species were isolated, of which Escherichia coli (87%) was the most predominant species. MICs showing reduced susceptibility to ampicillin, ceftiofur, chloramphenicol, florfenicol, spectinomycin, streptomycin, and tetracycline were observed in E. coli isolates. Isolates exhibited resistance to ampicillin (48%), ceftiofur (11%), chloramphenicol (20%), florfenicol (78%), spectinomycin (18%), and tetracycline (93%). Multidrug resistance (≥3 to 6 antimicrobials) was seen in 40% of E. coli isolates from healthy lactating cattle. Of 113 tetracycline-resistant E. coli isolates, tet(B) was the predominant resistance determinant and was detected in 93% of isolates, while the remaining 7% isolates carried the tet(A) determinant. DNA-DNA hybridization assays revealed that tet determinants were located on the chromosome. Pulsed-field gel electrophoresis revealed that tetracycline-resistant E. coli isolates (n = 99 isolates) belonged to 60 subtypes, which is suggestive of a highly diverse population of tetracycline-resistant organisms. On most occasions, E. coli subtypes, although shared between cows within the herd, were confined mostly to a dairy herd. The findings of this study suggest that commensal enteric E. coli from healthy lactating cattle can be an important reservoir for tetracycline and perhaps other antimicrobial resistance determinants.


1996 ◽  
Vol 40 (8) ◽  
pp. 1801-1805 ◽  
Author(s):  
M Vaara ◽  
M Porro

A synthetic peptide, KFFKFFKFFK [corrected], consisting of cationic lysine residues and hydrophobic phenylalanine residues was found to sensitize gram-negative bacteria to hydrophobic and amphipathic antibiotics. At a concentration of 3 micrograms/ml, it decreased the MIC of rifampin for smooth, encapsulated Escherichia coli by a factor of 300. Other susceptible bacterial species included Enterobacter cloacae, Klebsiella pneumoniae, and Salmonella typhimurium, but Pseudomonas aeruginosa was resistant. Similar results were obtained with another synthetic peptide, IKFLKFLKFLK [corrected]. The fractional inhibitory concentration indices for the synergism of these peptides with rifampin, erythromycin, fusidic acid, and novobiocin were very close to those determined for the previously characterized potent outer-membrane-disorganizing agents polymyxin B nonapeptide and deacylpolymyxin B. KFFKFFKFFK [corrected] had direct activity against the gram-positive organism Micrococcus strain ML36, was strongly hemolytic, and was as active on polymyxin-resistant E. coli mutants as on their parent. These three attributes made KFFKFFKFFK [corrected] different from polymyxin derivatives and similar to cationic detergents, such as cetylpyridinium chloride. However, whereas the MIC of cetylpyridinium chloride for E. coli is low (0.5 to 4 micrograms/ml), that of KFFKFFKFFK [corrected] is much higher (30 to 100 micrograms/ml). Other groups of synthetic peptides studied included polymyxin-like peptides with an intrachain disulfide bridge. Their synergism with antibiotics was less marked. Still other peptides, including KEKEKEKEKE and KKKKKKFLFL, lacked any synergism with the probe antibiotics.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


2001 ◽  
Vol 45 (10) ◽  
pp. 2716-2722 ◽  
Author(s):  
P. L. Winokur ◽  
D. L. Vonstein ◽  
L. J. Hoffman ◽  
E. K. Uhlenhopp ◽  
G. V. Doern

ABSTRACT Escherichia coli is an important pathogen that shows increasing antimicrobial resistance in isolates from both animals and humans. Our laboratory recently described Salmonellaisolates from food animals and humans that expressed an identical plasmid-mediated, AmpC-like β-lactamase, CMY-2. In the present study, 59 of 377 E. coli isolates from cattle and swine (15.6%) and 6 of 1,017 (0.6%) isolates of human E. coli from the same geographic region were resistant to both cephamycins and extended-spectrum cephalosporins. AnampC gene could be amplified with CMY-2 primers in 94.8% of animal and 33% of human isolates. Molecular epidemiological studies of chromosomal DNA revealed little clonal relatedness among the animal and human E. coli isolates harboring the CMY-2 gene. The ampC genes from 10 animal and human E. coli isolates were sequenced, and all carried an identical CMY-2 gene. Additionally, all were able to transfer a plasmid containing the CMY-2 gene to a laboratory strain of E. coli. CMY-2 plasmids demonstrated two different plasmid patterns that each showed strong similarities to previously describedSalmonella CMY-2 plasmids. Additionally, Southern blot analyses using a CMY-2 probe demonstrated conserved fragments among many of the CMY-2 plasmids identified in Salmonella andE. coli isolates from food animals and humans. These data demonstrate that common plasmids have been transferred between animal-associated Salmonella and E. coli, and identical CMY-2 genes carried by similar plasmids have been identified in humans, suggesting that the CMY-2 plasmid has undergone transfer between different bacterial species and may have been transmitted between food animals and humans.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 184-184
Author(s):  
Bernat Canal ◽  
Luis Mesas ◽  
Cinta Sol ◽  
Monica Puyalto ◽  
Ana Carvajal ◽  
...  

Abstract Essential oils (EOs) have different mechanisms, most of them targeting the bacterial wall. This fact can explain differences in the effectivity of EOs between Gram-positive and Gram-negative bacteria. Therefore, combining certain EOs can broaden their individual spectrum of efficacy due to potential synergistic effects. This trial aimed to test the in vitro antibacterial activity of an EO combination (oregano and clove oils) against a collection of relevant bacterial pathogens in swine production. The Gram-negative bacterial species chosen were Salmonella enterica ssp. enterica, Escherichia coli and Brachyspira hyodysenteriae and the Gram-positive bacterial species were Clostridium perfringens and Streptococcus suis. In addition, Lactobacillus fermentum was included to compare the susceptibility between this beneficial intestinal bacteria and the pathogens tested. The broth microdilution method at pH 6 and the subculturing from wells without bacterial growth were used to determine the minimum concentration of active principle necessary to inhibit (MIC) or kill (MBC) the 50% and 90% (MIC50/90/MBC50/90) of the population of every bacteria. The results showed that the lowest MIC50/90 were obtained for B. hyodysenteriae (37.5/75 ppm) while for S. enterica ssp. enterica (150/300 ppm), C. perfringens (150/150 ppm), E. coli (300/300 ppm) and S. suis (150/300 ppm) results were similar. Regarding the MBC50/90; B. hyodysenteriae (18.8/75 ppm) was the most susceptible pathogen, again, compared to S. enterica ssp. enterica (300/300 ppm), C. perfringens (150/150 ppm), E. coli (300/300 ppm) and S. suis (150/300 ppm). In contrast, the highest bacteriostatic/bactericidal concentrations were obtained against L. fermentum (MIC50/90 600/1,200 ppm and MBC50/90 600/2,400 ppm). These results suggest that the bacterial category (Gram-positive or Gram-negative) did not have an influence on the MIC and MBC. It can also be concluded that B. hyodysenteriae is the most susceptible enteropathogen to this EO blend. However, the in vivo effect of this combination of EOs must be further studied.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 889
Author(s):  
Ann A. Elshamy ◽  
Sarra E. Saleh ◽  
Mohammad Y. Alshahrani ◽  
Khaled M. Aboshanab ◽  
Mohammad M. Aboulwafa ◽  
...  

Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of blaKPC, blaNDM, blaVIM, blaOXA-48, and blaIMP carbapenemase genes. The blaOXA-48 gene was detected in 24 (77.4%) of the tested isolates while blaVIM gene was detected in 8 (25.8%), both blaKPC and blaNDM genes were co-present in 1 (3.2%) isolate. Plasmids carrying the blaOXA-48 gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s).


Sign in / Sign up

Export Citation Format

Share Document