scholarly journals Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile?

Antibiotics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 32 ◽  
Author(s):  
Meade ◽  
Slattery ◽  
Garvey

Despite highly specialized international interventions and policies in place today, the rapid emergence and dissemination of resistant bacterial species continue to occur globally, threatening the longevity of antibiotics in the medical sector. In particular, problematic nosocomial infections caused by multidrug resistant Gram-negative pathogens present as a major burden to both patients and healthcare systems, with annual mortality rates incrementally rising. Bacteriocins, peptidic toxins produced by bacteria, offer promising potential as substitutes or conjugates to current therapeutic compounds. These non-toxic peptides exhibit significant potency against certain bacteria (including multidrug-resistant species), while producer strains remain insusceptible to the bactericidal peptides. The selectivity and safety profile of bacteriocins have been highlighted as superior advantages over traditional antibiotics; however, many aspects regarding their efficacy are still unknown. Although active at low concentrations, bacteriocins typically have low in vivo stability, being susceptible to degradation by proteolytic enzymes. Another major drawback lies in the feasibility of large-scale production, with these key features collectively limiting their current clinical application. Though such limitations require extensive research, the concept of expanding bacteriocins from food preservation to human health opens many fascinating doors, including novel drug delivery systems and anticancer treatment applications.

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1288
Author(s):  
Wendy Dong ◽  
Boris Kantor

CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector’s expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.


2021 ◽  
Author(s):  
Peng Zhang ◽  
Daqing Mao ◽  
Huihui Gao ◽  
Liyang Zheng ◽  
Zeyou Chen ◽  
...  

AbstractMultidrug-resistant plasmid-carrying bacteria are of particular clinical concern as they could transfer antibiotic resistance genes to other bacterial species. However, little is known whether evolutionary adaptation of plasmid-carrying bacteria after long-term antibiotic exposure could affect their subsequent colonization of the human gut. Herein, we combined a long-term evolutionary model based on Escherichia coli K-12 MG1655 and the multidrug-resistant plasmid RP4 with in vivo colonization experiments in mice. We found that the evolutionary adaptation of plasmid-carrying bacteria to antibiotic exposure facilitated colonization of the murine gut and subsequent plasmid transfer to gut bacteria. The evolved plasmid-carrying bacteria exhibited phenotypic alterations, including multidrug resistance, enhanced bacterial growth and biofilm formation capability and decreased plasmid fitness cost, which might be jointly caused by chromosomal mutations (SNPs in rpoC, proQ, and hcaT) and transcriptional modifications. The upregulated transcriptional genes, e.g., type 1 fimbrial-protein pilus (fimA and fimH) and the surface adhesin gene (flu) were likely responsible for the enhanced biofilm-forming capacity. The gene tnaA that encodes a tryptophanase-catalyzing indole formation was transcriptionally upregulated, and increased indole products participated in facilitating the maximum population density of the evolved strains. Furthermore, several chromosomal genes encoding efflux pumps (acriflavine resistance proteins A and B (acrA, acrB), outer-membrane protein (tolC), multidrug-resistance protein (mdtM), and macrolide export proteins A and B (macA, macB)) were transcriptionally upregulated, while most plasmid-harboring genes (conjugal transfer protein (traF) and (trbB), replication protein gene (trfA), beta-lactamase TEM precursor (blaTEM), aminoglycoside 3'-phosphotransferase (aphA) and tetracycline resistance protein A (tetA)) were downregulated. Collectively, these findings demonstrated that evolutionary adaptation of plasmid-carrying bacteria in an antibiotic-influenced environment facilitated colonization of the murine gut by the bacteria and plasmids.


2021 ◽  
pp. 1-9
Author(s):  
Teresa Coronado-Parra ◽  
Mónica Roldán ◽  
Marina Aboal

Alga in the genus Chroothece have been reported mostly from aquatic or subaerial continental environments, where they grow in extreme conditions. The strain Chroothece mobilis MAESE 20.29 was exposed to different light intensities, red and green monochromatic light, ultraviolet (UV) radiation, high nitrogen concentrations, and high salinity to assess the effect of those environmental parameters on its growth. Confocal laser scanning microscopy (CLSM) was used as an “in vivo” noninvasive single-cell method for the study. The strain seemed to prefer fairly high light intensities and showed a significant increase in allophycocyanin (APC) and chlorophyll a [photosystem I (PSI) and photosystem II (PSII)] fluorescence with 330 and 789 μM/cm2/s intensities. Green monochromatic light promoted a significant increase in the fluorescence of APC and chlorophyll a (PSI and PSII). UV-A significantly decreased phycocyanin and increased APC, while UV-A + B showed a greater decreasing effect on c-Phycocyanin but did not significantly change concentrations of APC. The increase in nitrogen concentration in the culture medium significantly and negatively affected all pigments, and no effect was observed with an increase in salinity. Our data show that CLSM represents a very powerful tool for ecological research of microalgae in small volumes and may contribute to the knowledge of phycobiliproteins in vivo behavior and the parameters for the large-scale production of these pigments.


Author(s):  
Mangal Shailesh Nagarsenker ◽  
Megha Sunil Marwah

The science of liposomes has expanded in ambit from bench to clinic through industrial production in thirty years since the naissance of the concept. This chapter makes an attempt to bring to light the impregnable contributions of great researchers in the field of liposomology that has witnessed clinical success in the recent times. The journey which began in 1965 with the observations of Bangham and further advances made en route (targeting/stealthing of liposomes) along with alternative and potential liposome forming amphiphiles has been highlighted in this chapter. The authors have also summarised the conventional and novel industrially feasible methods used to formulate liposomes in addition to characterisation techniques which have been used to set up quality control standards for large scale production. Besides, the authors have provided with an overview of primary therapeutic and diagnostic applications and a brief insight into the in vivo behaviour of liposomes.


2017 ◽  
Vol 9 (3) ◽  
pp. 371-377
Author(s):  
Charles Oluwaseun ADETUNJI ◽  
Julius Kola OLOKE ◽  
Gandham PRASAD ◽  
Moses ABALAKA ◽  
Emenike Onyebum IROKANULO

Formulation of effective and environmental friendly bioherbicides depends on the type of fermentation medium used for the production of phytotoxic metabolites. The effect of biomass, colony forming unit and the phytotoxic metabolite produced from the biphasic fermentation was carried out, while the phytotoxic metabolite was  tested in vivo and in-vitro on Echinochola crus-galli and dicotyledonous Chromolaena odorata. The mutant strain of Lasiodiplodia pseudotheobromae C1136 (Lp90) produced the highest amount of conidia and the largest necrotic area on the two tested weeds when compared to its wild strain in the different biphasic media combinations. The study revealed that the biphasic system containing PDB + rice produced the highest bioherbicidal activities. Therefore, the phytotoxic metabolites from strain C1136 are suggested for large scale production of bioherbicides for the management of weeds in conventional farming to improve yield and enhance food security.


2020 ◽  
Vol 86 (8) ◽  
Author(s):  
Wei Luo ◽  
Chao Xue ◽  
Yuzheng Zhao ◽  
Huili Zhang ◽  
Zhiming Rao ◽  
...  

ABSTRACT Blakeslea trispora is an industrial fungal species used for large-scale production of carotenoids. However, B. trispora light-regulated physiological processes, such as carotenoid biosynthesis and phototropism, are not fully understood. In this study, we isolated and characterized three photoreceptor genes, btwc-1a, btwc-1b, and btwc-1c, in B. trispora. Bioinformatics analyses of these genes and their protein sequences revealed that the functional domains (PAS/LOV [Per-ARNT-Sim/light-oxygen-voltage] domain and zinc finger structure) of the proteins have significant homology to those of other fungal blue-light regulator proteins expressed by Mucor circinelloides and Neurospora crassa. The photoreceptor proteins were synthesized by heterologous expression in Escherichia coli. The chromogenic groups consisting of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) were detected to accompany BTWC-1 proteins by using high-performance liquid chromatography (HPLC) and fluorescence spectrometry, demonstrating that the proteins may be photosensitive. The absorbance changes of the purified BTWC-1 proteins seen under dark and light conditions indicated that they were light responsive and underwent a characteristic photocycle by light induction. Site-directed mutagenesis of the cysteine residual (Cys) in BTWC-1 did not affect the normal expression of the protein in E. coli but did lead to the loss of photocycle response, indicating that Cys represents a flavin-binding domain for photon detection. We then analyzed the functions of BTWC-1 proteins by complementing btwc-1a, btwc-1b, and btwc-1c into the counterpart knockout strains of M. circinelloides for each mcwc-1 gene. Transformation of the btwc-1a complement into mcwc-1a knockout strains restored the positive phototropism, while the addition of btwc-1c complement remedied the deficiency of carotene biosynthesis in the mcwc-1c knockout strains under conditions of illumination. These results indicate that btwc-1a and btwc-1c are involved in phototropism and light-inducible carotenogenesis. Thus, btwc-1 genes share a conserved flavin-binding domain and act as photoreceptors for control of different light transduction pathways in B. trispora. IMPORTANCE Studies have confirmed that light-regulated carotenogenesis is prevalent in filamentous fungi, especially in mucorales. However, few investigations have been done to understand photoinduced synthesis of carotenoids and related mechanisms in B. trispora, a well-known industrial microbial strains. In the present study, three photoreceptor genes in B. trispora were cloned, expressed, and characterized by bioinformatics and photoreception analyses, and then in vivo functional analyses of these genes were constructed in M. circinelloides. The results of this study will lead to a better understanding of photoreception and light-regulated carotenoid synthesis and other physiological responses in B. trispora.


Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 414
Author(s):  
Mary Garvey

Antimicrobial resistance necessitates action to reduce and eliminate infectious disease, ensure animal and human health, and combat emerging diseases. Species such as Acinetobacter baumanniii, vancomycin resistant Enterococcus, methicillin resistance Staphylococcus aureus, and Pseudomonas aeruginosa, as well as other WHO priority pathogens, are becoming extremely difficult to treat. In 2017, the EU adopted the “One Health” approach to combat antibiotic resistance in animal and human medicine and to prevent the transmission of zoonotic disease. As the current therapeutic agents become increasingly inadequate, there is a dire need to establish novel methods of treatment under this One Health Framework. Bacteriophages (phages), viruses infecting bacterial species, demonstrate clear antimicrobial activity against an array of resistant species, with high levels of specificity and potency. Bacteriophages play key roles in bacterial evolution and are essential components of all ecosystems, including the human microbiome. Factors such are their specificity, potency, biocompatibility, and bactericidal activity make them desirable options as therapeutics. Issues remain, however, relating to their large-scale production, formulation, stability, and bacterial resistance, limiting their implementation globally. Phages used in therapy must be virulent, purified, and well characterized before administration. Clinical studies are warranted to assess the in vivo pharmacokinetics and pharmacodynamic characteristics of phages to fully establish their therapeutic potential.


2019 ◽  
Vol 7 (10) ◽  
pp. 387 ◽  
Author(s):  
Monica Salamone ◽  
Aldo Nicosia ◽  
Giulio Ghersi ◽  
Marcello Tagliavia

Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based preparations toward the substrate strongly relies on the enzyme purity. However, the overall activity may depend on the cooperation with other proteases, the presence of which may be essential for the overall enzymatic activity, but potentially harmful for cells and tissues. Vibrios produce some of the most promising bacterial proteases (including collagenases), and their exo-proteome includes several enzymes with different substrate specificities, the production and relative abundances of which strongly depend on growth conditions. We evaluated the effects of different media compositions on the proteolytic exo-proteome of Vibrio alginolyticus and its closely relative Vibrio parahaemolyticus, in order to improve the overall proteases production, as well as the yield of the desired enzymes subset. Substantial biological responses were achieved with all media, which allowed defining culture conditions for targeted improvement of selected enzyme classes, besides giving insights in possible regulatory mechanisms. In particular, we focused our efforts on collagenases production, because of the growing biotechnological interest due to their pharmaceutical/biomedical applications.


2001 ◽  
Vol 11 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Tom DeGomez ◽  
Michael R. Wagner

Robinia L. (locust) species are among the most widely planted tree species in the world because they are ornamentally attractive, drought tolerant, fast growing, fix nitrogen, have very hard durable wood, and are adaptable to many sites and climates. Recent taxonomic analysis indicates there are four species, black locust (R. pseudoacacia L.); bristly locust (R. hispida L.); clammy locust (R. viscosa Vent.); and new mexican locust (R. neomexicana A. Gray). All four species originate in the southern United States and northern Mexico. Many horticultural cultivars are available. Locusts are tolerant of a wide range of soil types so long as there is good drainage, adequate moisture, and it is not very clayey. The environmental tolerance of locust makes it an excellent candidate for horticultural uses and for future breeding and selection to enhance its many desirable traits. It is easy to propagate via seed, root cuttings, soft- or hardwood cuttings, budding/grafting, or tissue culture. Locust has indeterminate growth. Spacing of plants in plantations is critical for the production of multiple products including high value timber. Locust is known for its ability to withstand drought conditions however at the cost of leaf shedding. Black locust contributes high levels of nitrogen to the soil from nitrogen fixing bacterial symbiosis. The major drawback to large-scale production of black locust in its native range is the damage that occurs from the locust borer (Megacyllene robiniae Forster). When planted outside the range of the locust borer it can be grown successfully as landscape specimen trees and as trees large enough for lumber production when varieties with straight trunks are grown. Damage from locust leaf miner (Odontata dorsalis Thunberg) can greatly detract from the trees ornamental qualities. Its most common use is as a site reclamation species. The tree is also used in honey production. The wood is highly decay resistant and is greatly valued for poles and posts. The wood is extremely hard and easy to work making it highly desirable for many construction uses.


1997 ◽  
Vol 77 (04) ◽  
pp. 755-759 ◽  
Author(s):  
Jianming Gu ◽  
Yue Liu ◽  
Lijun Xia ◽  
Haiying Wan ◽  
Peixia Li ◽  
...  

SummaryA murine monoclonal (mAb) SZ-51 specific for human P-selectin may be used for in vivo thrombus imaging and for the targeting of fibrinolytic agents to thrombi. In order to reduce the immunogenicity of the murine mAb SZ-51 in humans, we cloned and sequenced the cDNAs encoding the variable region of mAb SZ-51 in order to develop mouse/human chimeric reagents. The E. coli expression vector. pHENl-SZ51 Fab/Hu was constructed by fusing the variable regions of mAb SZ-51 with human IgG γICHI and Cκ genes. The constructs were introduced into E. coli HB2151 for expression of soluble chimeric Fab fragment. We also constructed two fusion products by joining the variable regions of mouse antibody to the appropriate constant regions of human Igγl and κ. These chimeras were cloned into two eukaryotic selectable expression vectors separately, which were then cotransfected into a non-Ig secreting murine myeloma line SP2/0 with lipofectin reagent. Six cell lines remained positive for Ig secretion. The highest producing cell line, which showed stable integration and expression at 5 mg/1 of culture, was selected for the large scale production of chimeric antibody. Immunoblotting analysis demonstrated that both of the chimeric antibodies (SZ51Fab/Hu, SZ51/Hu) in the culture supernatants, like the native mAb SZ-51, bind P-selectin. In addition, the whole chimeric antibody can compete for binding to activated platelets with murine SZ-51. Therefore, the SZ-51 chimeric antibody may be a potential agent for diagnosis and treatment of thrombotic diseases in the future.


Sign in / Sign up

Export Citation Format

Share Document