scholarly journals Phytochemical Composition and In Vitro Antimicrobial Activity of Essential Oils from the Lamiaceae Family against Streptococcus agalactiae and Candida albicans Biofilms

Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 592
Author(s):  
Ramona Iseppi ◽  
Roberta Tardugno ◽  
Virginia Brighenti ◽  
Stefania Benvenuti ◽  
Carla Sabia ◽  
...  

The antimicrobial activity of different essential oils (EOs) from the Lamiaceae family was evaluated on Streptococcus agalactiae, Candida albicans, and lactobacilli. S. agalactiae is the main cause of severe neonatal infections, such as sepsis, meningitis, and pneumonia. C. albicans is a primary causative agent of vulvovaginal candidiasis, a multifactorial infectious disease of the lower female reproductive tract. Lactobacilli represent the dominant bacterial species of the vaginal flora and constitute the natural defense against pathogens. On the basis of the preliminary results, the attention was focused on the EOs from Lavandula x intermedia Emeric ex Loisel. and Mentha arvensis L. By using gas ghromatography (GS) retention data and mass spectra, it was possible to identify more than 90% of the total composition of the EO samples. The minimal inhibitory concentration (MIC) and anti-biofilm activity of the two EOs were determined against all isolated strains, using the EOs by themselves or in combination with each other and with drugs (erythromycin and fluconazole). The results showed a good antimicrobial and anti-biofilm activity of both EOs and a synergistic effect, leading to the best results against all the strains, resulted using the combinations EOs/EOs and antimicrobials/EOs.

2015 ◽  
Vol 10 (6) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Prabodh Satyal ◽  
Bhuwan K. Chhetri ◽  
Noura S. Dosoky ◽  
Ambika Poudel ◽  
William N. Setzer

The essential oil from the dried rhizome of Nardostachys grandiflora, collected from Jaljale, Nepal, was obtained in 1.4% yield, and a total of 72 compounds were identified constituting 93.8% of the essential oil. The rhizome essential oil of N. grandiflora was mostly composed of calarene (9.4%), valerena-4,7(11)-diene (7.1%), nardol A (6.0%), 1(10)-aristolen-9-ol (11.6%), jatamansone (7.9%), valeranal (5.6%), and cis-valerinic acid (5.7%). The chemical composition of N. grandiflora rhizome oil from Nepal is qualitatively very different than those from Indian, Chinese, and Pakistani Nardostachys essential oils. In this study we have evaluated the chemical composition and biological activities of N. grandiflora from Nepal. Additionally, 1(10)-aristolen-9-ol was isolated and the structure determined by NMR, and represents the first report of this compound from N. grandiflora. N. grandiflora rhizome oil showed in-vitro antimicrobial activity against Bacillus cereus, Escherichia coli, and Candida albicans (MIC = 156 μg/mL), as well as in-vitro cytotoxic activity on MCF-7 cells.


2014 ◽  
Vol 9 (11) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Marija Karapandzova ◽  
Gjose Stefkov ◽  
Ivana Cvetkovikj ◽  
Elena Trajkovska-Dokik ◽  
Ana Kaftandzieva ◽  
...  

The chemical composition and antimicrobial activity of the essential oils isolated from twigs with needles (T+N) and from twigs without needles (T-N) from wild Pinus peuce Griseb. (Pinaceae), from three different locations in R. Macedonia, were investigated. Essential oil yields of T+N ranged from 7.5 mL/kg to 12.5 mL/kg and for T-N from 13.8 mL/kg to 17.3 mL/kg. GC/FID/MS analysis of the essential oils revealed eighty-four components, representing 93.7–95.7% and 91.2–92.0% of the T+N and T-N oils, respectively. The major components in T+N and T-N oils were monoterpenes: α-pinene (23.8–39.9%, 21.2–23.3%), camphene (2.2–5.5%, 0.7–2.0%), β-pinene (10.1–17.1%, 8.2–16.4%), myrcene (1.2–1.41%, 1.6–2.5%), limonene+β-phellandrene (6.8–14.0%, 8.8–23.6%) and bornyl acetate (2.3–6.9%, 1.1–3.4%), followed by the sesquiterpenes: trans-( E)-caryophyllene (3.6–4.3%, 3.2–7.3%), germacrene D (7.1–9.5%, 5.0–10.3%) and δ-cadinene (2.1–3.1%, 3.3–4.2%, respectively). Antimicrobial screening of the essential oils was made by disk diffusion and broth dilution methods against 13 bacterial isolates of Gram-positive and Gram-negative bacteria and one strain of Candida albicans. T-N essential oils showed antimicrobial activity toward Streptococcus pneumoniae, Staphylococcus aureus, S. epidermidis and Candida albicans as well as Streptococcus agalactiae, Acinetobacter spp. and Haemophilus influenzae. The antimicrobial activity of T+N essential oils was greater, especially against Streptococcus agalactiae, S. pyogenes, Enterococcus and Candida albicans, followed by Haemophilus influenzae, Acinetobacter spp., Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and S. epidermidis. Minimal inhibitory concentrations (MICs) of all tested essential oils ranged from 15–125 μL/mL. Summarizing the obtained results, the antimicrobial activity of Pinus peuce T+N and T-N essential oils collected from different localities in R. Macedonia varied considerably. These alterations in the antimicrobial activity can be attributed to the differences in the quantitative composition and percentage amounts of the components present in the respective essential oils, although it was evident that there were no differences in the qualitative composition of the essential oils, regardless of the locality of collection, or the type of plant material (T+N or T-N).


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Manuel Gómez-García ◽  
Cinta Sol ◽  
Pedro J. G. de Nova ◽  
Mónica Puyalto ◽  
Luis Mesas ◽  
...  

Abstract Background Accurate screening of new alternative antimicrobial compounds is essential for their use to control pathogens in swine production due to the replacement of antibiotics and zinc oxide. Most in vitro studies have separately reported the antimicrobial activity of organic acids and essential oils (EOs) using diverse methods for susceptibility testing. In addition, in vitro outcomes can help in the selection of the suitable antimicrobial compound and effective combinations of these compounds in the control of pathogens of interest in pork production. Therefore, the aim of this study is to determinate the antibacterial activity of six organic acids and six EOs against Escherichia coli, Salmonella spp. and Clostridium perfringens isolates, some of them multi-resistant to antibiotics, from swine origin. The synergistic effects between the products with higher activity for each bacteria were also calculated. Results All products tested showed activity against at least one bacterial species, except for black pepper EO. The results showed that formic acid with the shortest chain length was the most effective against E. coli and Salmonella spp., while the sodium salt of coconut fatty acid distillates with long chain acids was the most effective against C. perfringens. The susceptibility of isolates tested to EOs was similar, a result that demonstrates a similar activity of these products against phylogenetically unrelated pathogens. In addition, an additive effect was shown for carvacrol-oregano EO for E. coli, formic acid-carvacrol and formic acid-thymol for Salmonella spp. and carvacrol-cinamaldehyde for C. perfringens. Conclusions The susceptibility of isolates to EOs was similar, a result that demonstrates a similar activity of these products against phylogenetically unrelated pathogens in contrast to organic acids. In addition, an additive effect was shown for several combinations of these compounds.


2021 ◽  
Vol 99 (4) ◽  
pp. 531-553 ◽  
Author(s):  
Cindrilla Chumduri ◽  
Margherita Y. Turco

AbstractHealthy functioning of the female reproductive tract (FRT) depends on balanced and dynamic regulation by hormones during the menstrual cycle, pregnancy and childbirth. The mucosal epithelial lining of different regions of the FRT—ovaries, fallopian tubes, uterus, cervix and vagina—facilitates the selective transport of gametes and successful transfer of the zygote to the uterus where it implants and pregnancy takes place. It also prevents pathogen entry. Recent developments in three-dimensional (3D) organoid systems from the FRT now provide crucial experimental models that recapitulate the cellular heterogeneity and physiological, anatomical and functional properties of the organ in vitro. In this review, we summarise the state of the art on organoids generated from different regions of the FRT. We discuss the potential applications of these powerful in vitro models to study normal physiology, fertility, infections, diseases, drug discovery and personalised medicine.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 252
Author(s):  
Eman H. Reda ◽  
Zienab T. Abdel Shakour ◽  
Ali M. El-Halawany ◽  
El-Sayeda A. El-Kashoury ◽  
Khaled A. Shams ◽  
...  

The genus Centaurea is recognized in folk medicine for anti-inflammatory, anti-itch, antitussive, purgative, astringent, and tonic activities. To study the chemical determinant for antimicrobial activity essential oils (EOs), five Centaurea species were analyzed including: C. scoparia, C. calcitrapa, C. glomerata, C. lipii and C. alexandrina. Conventional hydro-distillation (HD) and microwave-assisted extraction (MAE), as new green technologies, were compared for the extraction of essential oils. GC/MS analysis identified 120 EOs including mostly terpenoid except from C. lipii and C. alexandrina in which nonterpenoids were the major constituents. Major terpenoids included spathulenol, caryophyllene oxide and alloaromadendrene oxide-2. To probe antibacterial activity, potential EO inhibitors of a bacterial type II DNA topoisomerase, DNA gyrase B were screened via an in silico molecular docking approach. Spathulenol and alloaromadendrene oxide-2 possessed the best binding affinity in the ATP- binding pocket of Gyrase B enzyme. Principal component analysis and agglomerative hierarchical clustering were used for sample classification and revealed that sesquiterpenes contributed the most for accessions classification. In vitro antimicrobial activity against Staphylococcus aureus, Escherichia coli and Aspergillus niger for all EOs were also evaluated. EOs from C. lipii, C. glomerata and C. calcitrapa exhibited significant MIC against S. aureus with an MIC value of 31.25 µg/mL.


2017 ◽  
Vol 32 (5) ◽  
pp. 544-551 ◽  
Author(s):  
Roberta Tardugno ◽  
Federica Pellati ◽  
Ramona Iseppi ◽  
Moreno Bondi ◽  
Giacomo Bruzzesi ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Eduardo G. Aisen ◽  
Wilfredo Huanca López ◽  
Manuel G. Pérez Durand ◽  
Edita Torres Mamani ◽  
Juan C. Villanueva Mori ◽  
...  

The viscous seminal plasma (SP) is currently a major impediment to the handling of ejaculate and the development of some biotechnologies in South American camelids. The vas deferens-collected spermatozoa of alpacas is a useful technique to avoid this problem. On the other hand, SP contains a large protein component that has been implicated in the function of spermatozoa within the female reproductive tract. In this sense, the low fertility achieved using transcervical insemination with frozen-thawed spermatozoa in alpacas could be improved by adding SP. This study aimed to evaluate the effect of the whole SP on some in vitro parameters of alpaca spermatozoa after the freezing-thawing-process and the fertility after artificial insemination. It would contribute to a better understanding of the interaction between thawed sperm cells and SP. Spermatozoa were obtained by surgically diverted vas deferens. The samples were diluted with a Tris-based extender, packaged in straws, and frozen. At thawing, each straw was divided into two post-thawing conditions: with the addition of 10% of PBS (control) or with 10% SP (treatment). The sperm cells were evaluated using dynamic parameters, sperm cell morphology, and morphometry. Fertility was assessed by an artificial insemination trial. All in vitro parameters were analyzed by ANOVA. A heterogeneity test was scheduled for the fertility trial. After the freezing-thawing process, motility and plasma membrane functionality was improved when SP was added. No differences were found for post-thaw viability between the control and treatment samples. The percentage of normal cells was higher with SP at post-thawing, and a decrease of the presence of bent tailed spermatozoa with a droplet in the SP group was observed. The length of the head spermatozoa was 3.4% higher in the samples with PBS compared to those in which SP was added. Females pregnant at day 25 post-insemination were 0/12 (with SP inside the straw) and 1/10 (without SP inside the straw). In conclusion, the presence of 10% SP at post-thawing improves sperm cells' motility, functionality, and morphology, indicating that it would be beneficial to improve the frozen-thawed alpaca's physiology spermatozoa. More fertility trials must be developed to increase this knowledge.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4958
Author(s):  
Jessa Marie V. Makabenta ◽  
Jungmi Park ◽  
Cheng-Hsuan Li ◽  
Aritra Nath Chattopadhyay ◽  
Ahmed Nabawy ◽  
...  

Biofilm infections are a global public health threat, necessitating new treatment strategies. Biofilm formation also contributes to the development and spread of multidrug-resistant (MDR) bacterial strains. Biofilm-associated chronic infections typically involve colonization by more than one bacterial species. The co-existence of multiple species of bacteria in biofilms exacerbates therapeutic challenges and can render traditional antibiotics ineffective. Polymeric nanoparticles offer alternative antimicrobial approaches to antibiotics, owing to their tunable physico-chemical properties. Here, we report the efficacy of poly(oxanorborneneimide) (PONI)-based antimicrobial polymeric nanoparticles (PNPs) against multi-species bacterial biofilms. PNPs showed good dual-species biofilm penetration profiles as confirmed by confocal laser scanning microscopy. Broad-spectrum antimicrobial activity was observed, with reduction in both bacterial viability and overall biofilm mass. Further, PNPs displayed minimal fibroblast toxicity and high antimicrobial activity in an in vitro co-culture model comprising fibroblast cells and dual-species biofilms of Escherichia coli and Pseudomonas aeruginosa. This study highlights a potential clinical application of the presented polymeric platform.


2019 ◽  
Vol 10 (2) ◽  
pp. 1049-1053 ◽  
Author(s):  
Geetha RV ◽  
John Rozar Raj B ◽  
Lakshmi Thangavelu

To conduct a study regarding the antibacterial activity of essential oils against bacteria causing Caries. Essential oils are distillates of the volatile compounds of a plant’s secondary metabolism and may act as photoprotective agents. Their curative effect has been known since antiquity. It is based on a variety of pharmacological properties which are specific for each plant species. The mouth contains a variety of oral bacteria, but only a few species of bacteria are believed to cause dental caries. Antibacterial activity of the three essential oils, Rosemary oil, Holy basil oil, Thyme oil was screened against Streptococcus mutans, using disc diffusion technique. The rosemary oil was more effective against Streptococcus mutans with a zone of inhibition of 52 mm diameter (at concentration 200 µl), Rosemary oil showed a zone of inhibition of 44 mm diameter and with thyme oil, the zone diameter was 30 mm. The results of this study showed that the essential oils at different concentrations exhibited antibacterial activity against the bacterial species tested.


Sign in / Sign up

Export Citation Format

Share Document