scholarly journals Synthesis of 4,4′-(4-Formyl-1H-pyrazole-1,3-diyl)dibenzoic Acid Derivatives as Narrow Spectrum Antibiotics for the Potential Treatment of Acinetobacter Baumannii Infections

Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 650 ◽  
Author(s):  
Evan Delancey ◽  
Devin Allison ◽  
Hansa Raj KC ◽  
David F. Gilmore ◽  
Todd Fite ◽  
...  

Acinetobacter baumannii has emerged as one of the most lethal drug-resistant bacteria in recent years. We report the synthesis and antimicrobial studies of 25 new pyrazole-derived hydrazones. Some of these molecules are potent and specific inhibitors of A. baumannii strains with a minimum inhibitory concentration (MIC) value as low as 0.78 µg/mL. These compounds are non-toxic to mammalian cell lines in in vitro studies. Furthermore, one of the potent molecules has been studied for possible in vivo toxicity in the mouse model and found to be non-toxic based on the effect on 14 physiological blood markers of organ injury.

2014 ◽  
Vol 70 (a1) ◽  
pp. C714-C714
Author(s):  
Calvin Steussy ◽  
Cynthia Stauffacher ◽  
Mark Lipton ◽  
Mohamed Seleem

The emergence of multi-drug resistant pathogenic bacteria is one of the great challenges to modern medicine. The gram positive cocci Methicillin Resistant Staphylococcus aureus (MRSA) and Vancomycin Resistant Enterococcus faecalis (VRE) are two particularly virulent examples. In vivo studies have shown that the eukaryotic like 'mevalonate' isoprenoid pathway used by these pathogenic cocci is essential to their growth and virulence [1]. Our structures of HMG-CoA reductase (HMGR) from P. mevalonii demonstrated that the bacterial enzymes are structurally distinct from the human enzymes allowing for specific antibacterial activity [2]. High throughput in vitro screening against bacterial HMGR at the Southern Research Center, Birmingham, AL uncovered a lead compound with an IC50 of 80 µM with a competitive mode of action. Our x-ray crystal structures of HMGR from E. faecalis complexed with the lead compound and its variations have informed the synthesis of new inhibitors that have improved the IC50 to 5 µM [3]. Studies of this compound show it to be active against both MRSA and VRE in culture, effective against these bacteria in biofilms, and efficacious in a model system of eukaryotic infection. Structures and kinetics of these compounds will be presented and future directions discussed.


Author(s):  
Lucia Blasco ◽  
Anton Ambroa ◽  
Maria Lopez ◽  
Laura Fernandez-Garcia ◽  
Ines Bleriot ◽  
...  

The global health emergency caused by multi-drug resistant bacteria has led to the search for and development of new antimicrobial agents. Phage therapy is an abandoned antimicrobial therapy that has been resumed in recent years. In this study, we mutated a lysogenic phage from Acinetobacter baumannii into a lytic phage (Ab105-2phiΔCI) showing antimicrobial activity against A.baumannii clinical strains (such as Ab177_GEIH-2000 which showed MICs to meropenem and imipenem of 32 µg/ml and 16 µg/ml, respectively as well as belonging to GEIH-REIPI Spanish Multicenter A. baumannii Study II 2000/2010, Umbrella Genbank Bioproject PRJNA422585). We then enhanced the time kill curves (in vitro) and in Galleria mellonella survival assays (in vivo) antimicrobial activity of the new lytic phage by combining it with carbapenem antibiotics (meropenem and imipenem). We observed in vitro, an antimicrobial synergistic effect (from 4 log to 7 log CFU/ml) with meropenem plus lytic phage in all combinations analysed (0.1, 1 and 10 MOI of Ab105-2phiΔCI mutant as well as 1/4 and 1/8 MIC of meropenem). Moreover, we had a decrease in bacterial growth of 8 log CFU/ml for the combination of imipenem at 1/4 MIC plus lytic phage (Ab105-2phiΔCI mutant) and of 4 log CFU/ml for the combination of imipenem at 1/8 MIC plus lytic phage (Ab105-2phiΔCI mutant) in both MOI 1 and 10. These results were confirmed in in vivo (G. mellonella) obtaining a higher effectiveness in the combination of imipenem and Ab105-2phiΔCI mutant (P<0.05 by Log Rank-Matel Cox test). This approach could help to reduce the emergence of phage resistant bacteria and restore sensitivity to the antibiotics when used to combat multiresistant strains of Acinetobacter baumannii.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Parvin Askari ◽  
Mohammad Hasan Namaei ◽  
Kiarash Ghazvini ◽  
Mehran Hosseini

Abstract Background Melittin is one of the most studied antimicrobial peptides, and several in vitro experiments have demonstrated its antibacterial efficacy. However, there is evidence showing melittin has non-promising effects such as cytotoxicity and hemolysis. Therefore, concerns about unwanted collateral toxicity of melittin lie ahead in the path toward its clinical development. With these considerations, the present study aimed to fill the gap between in vitro and in vivo studies. Methods In the first step, in vitro toxicity profile of melittin was assessed using cytotoxicity and hemolysis tests. Next, a maximum intraperitoneal (i.p.) sub-lethal dose was determined using BALB/c mice. Besides toxicity, antimicrobial efficacy of melittin against extensively drug-resistant (XDR) Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA), and KPC-producing Klebsiella pneumonia (KPC-KP) pathogens were tested using both in vitro and in vivo methods. Results Melittin showed extensive hemolysis (HD50 = 0.44 µg/mL), and cytotoxicity (IC50 = 6.45 µg/mL) activities with i.p. LD50 value of 4.98 mg/kg in BALB/c mice. In vitro antimicrobial evaluation showed melittin MIC range from 8 to 32 µg/mL for the studied pathogens. Treatment of infected mice with repeated sub-lethal doses of melittin (2.4 mg/kg) displayed no beneficial effect on their survival and peritoneal bacterial loads. Conclusions These results indicate that melittin at its safe dose could not exhibit antimicrobial activity, which hinders its application in clinical practice.


2012 ◽  
Vol 56 (6) ◽  
pp. 3309-3317 ◽  
Author(s):  
Sheng-An Li ◽  
Wen-Hui Lee ◽  
Yun Zhang

ABSTRACTAntimicrobial peptides (AMPs) have been considered alternatives to conventional antibiotics for drug-resistant bacterial infections. However, their comparatively high toxicity toward eukaryotic cells and poor efficacyin vivohamper their clinical application. OH-CATH30, a novel cathelicidin peptide deduced from the king cobra, possesses potent antibacterial activityin vitro. The objective of this study is to evaluate the efficacy of OH-CATH30 and its analog OH-CM6 against drug-resistant bacteriain vitroandin vivo. The MICs of OH-CATH30 and OH-CM6 ranged from 1.56 to 12.5 μg/ml against drug-resistant clinical isolates of several pathogenic species, includingEscherichia coli,Pseudomonas aeruginosa, and methicillin-resistantStaphylococcus aureus. The MICs of OH-CATH30 and OH-CM6 were slightly altered in the presence of 25% human serum. OH-CATH30 and OH-CM6 killedE. coliquickly (within 60 min) by disrupting the bacterial cytoplasmic membrane. Importantly, the 50% lethal doses (LD50) of OH-CATH30 and OH-CM6 in mice following intraperitoneal (i.p.) injection were 120 mg/kg of body weight and 100 mg/kg, respectively, and no death was observed at any dose up to 160 mg/kg following subcutaneous (s.c.) injection. Moreover, 10 mg/kg OH-CATH30 or OH-CM6 significantly decreased the bacterial counts as well as the inflammatory response in a mouse thigh infection model and rescued infected mice in a bacteremia model induced by drug-resistantE. coli. Taken together, our findings demonstrate that the natural cathelicidin peptide OH-CATH30 and its analogs exhibit relatively low toxicity and potent efficacy in mouse models, indicating that they may have therapeutic potential against the systemic infections caused by drug-resistant bacteria.


2007 ◽  
Vol 51 (9) ◽  
pp. 3416-3419 ◽  
Author(s):  
Mick M. Welling ◽  
Carlo P. J. M. Brouwer ◽  
Wim van ′t Hof ◽  
Enno C. I. Veerman ◽  
Arie V. Nieuw Amerongen

ABSTRACT Homodimerization of histatin-derived peptides generally led to improved bactericidal activity against Staphylococcus aureus in vitro. In vivo, monomers and dimers were equally active in killing bacteria in mice with a soft tissue infection. Altogether, these peptides are promising compounds for the development of novel therapeutics against infections with drug-resistant bacteria.


RSC Advances ◽  
2018 ◽  
Vol 8 (47) ◽  
pp. 26626-26639 ◽  
Author(s):  
Menglong Liu ◽  
Ying Wang ◽  
Xiaodong Hu ◽  
Weifeng He ◽  
Yali Gong ◽  
...  

The requirements for anti-permeation, anti-infection and antifouling when treating a malicious wound bed raise new challenges for wound dressing.


2021 ◽  
Author(s):  
Ramasamy Palaniappan ◽  
Govindan Dayanithi

Bacteriophages are bacterial cell-borne viruses that act as natural bacteria killers and they have been identified as therapeutic antibacterial agents. Bacteriophage therapy is a bacterial disease medication that is given to humans after a diagnosis of the disease to prevent and manage a number of bacterial infections. The ability of phage to invade and destroy their target bacterial host cells determines the efficacy of bacteriophage therapy. Bacteriophage therapy, which can be specific or nonspecific and can include a single phage or a cocktail of phages, is a safe treatment choice for antibiotic-resistant and recurrent bacterial infections after antibiotics have failed. A therapy is a cure for health problems, which is administered after the diagnosis of the diseases in the patient. Such non-antibiotic treatment approaches for drug-resistant bacteria are thought to be a promising new alternative to antibiotic therapy and vaccination. The occurrence, biology, morphology, infectivity, lysogenic and lytic behaviours, efficacy, and mechanisms of bacteriophages’ therapeutic potentials for control and treatment of multidrug-resistant/sensitive bacterial infections are discussed. Isolation, long-term storage and recovery of lytic bacteriophages, bioassays, in vivo and in vitro experiments, and bacteriophage therapy validation are all identified. Holins, endolysins, ectolysins, and bacteriocins are bacteriophage antibacterial enzymes that are specific. Endolysins cause the target bacterium to lyse instantly, and hence their therapeutic potential has been explored in “Endolysin therapy.” Endolysins have a high degree of biochemical variability, with certain lysins having a wider bactericidal function than antibiotics, while their bactericidal activities are far narrower. Bacteriophage recombinant lysins (chimeric streptococcal–staphylococcal constructs) have high specificity for a single bacterial species, killing only that species (lysin (CF-301) is focused to kill methicillin resistant Staphylococcus aureus (MRSA)), while other lysins have a broader lytic activity, killing several different bacterial species and hence the range of bactericidal activity. New advances in medicine, food safety, agriculture, and biotechnology demonstrate molecular engineering, such as the optimization of endolysins for particular applications. Small molecule antibiotics are replaced by lysins. The chapter discusses the occurrences of lytic phage in pathogenic bacteria in animals and humans, as well as the possible therapeutic effects of endolysins-bacteriophage therapy in vivo and in vitro, demonstrating the utility and efficacy of the therapy. Further developments in the bacteriophage assay, unique molecular-phage therapy, or a cocktail of phage for the control of a broad range of drug-resistant bacteria-host systems can promote non-antibiotic treatment methods as a viable alternative to conventional antibiotic therapy.


2010 ◽  
Vol 54 (11) ◽  
pp. 4636-4642 ◽  
Author(s):  
James B. Aggen ◽  
Eliana S. Armstrong ◽  
Adam A. Goldblum ◽  
Paola Dozzo ◽  
Martin S. Linsell ◽  
...  

ABSTRACT ACHN-490 is a neoglycoside, or “next-generation” aminoglycoside (AG), that has been identified as a potentially useful agent to combat drug-resistant bacteria emerging in hospitals and health care facilities around the world. A focused medicinal chemistry campaign produced a collection of over 400 sisomicin analogs from which ACHN-490 was selected. We tested ACHN-490 against two panels of Gram-negative and Gram-positive pathogens, many of which harbored AG resistance mechanisms. Unlike legacy AGs, ACHN-490 was active against strains expressing known AG-modifying enzymes, including the three most common such enzymes found in Enterobacteriaceae. ACHN-490 inhibited the growth of AG-resistant Enterobacteriaceae (MIC90, ≤4 μg/ml), with the exception of Proteus mirabilis and indole-positive Proteae (MIC90, 8 μg/ml and 16 μg/ml, respectively). ACHN-490 was more active alone in vitro against Pseudomonas aeruginosa and Acinetobacter baumannii isolates with AG-modifying enzymes than against those with altered permeability/efflux. The MIC90 of ACHN-490 against AG-resistant staphylococci was 2 μg/ml. Due to its promising in vitro and in vivo profiles, ACHN-490 has been advanced into clinical development as a new antibacterial agent.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 321
Author(s):  
Shekh Sabir ◽  
Tsz Tin Yu ◽  
Rajesh Kuppusamy ◽  
Basmah Almohaywi ◽  
George Iskander ◽  
...  

The quorum sensing (QS) system in multi-drug-resistant bacteria such as P. aeruginosa is primarily responsible for the development of antibiotic resistance and is considered an attractive target for antimicrobial drug discovery. In this study, we synthesised a series of novel selenourea and thiourea-containing dihydropyrrol-2-one (DHP) analogues as LasR antagonists. The selenium DHP derivatives displayed significantly better quorum-sensing inhibition (QSI) activities than the corresponding sulphur analogues. The most potent analogue 3e efficiently inhibited the las QS system by 81% at 125 µM and 53% at 31 µM. Additionally, all the compounds were screened for their minimum inhibitory concentration (MIC) against the Gram-positive bacterium S. aureus, and interestingly, only the selenium analogues showed antibacterial activity, with 3c and 3e being the most potent with a MIC of 15.6 µM.


Sign in / Sign up

Export Citation Format

Share Document