scholarly journals Protective Effect of Cocoa Bean Shell against Intestinal Damage: An Example of Byproduct Valorization

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 280
Author(s):  
Daniela Rossin ◽  
Letricia Barbosa-Pereira ◽  
Noemi Iaia ◽  
Barbara Sottero ◽  
Alice Costanza Danzero ◽  
...  

Background: Cocoa bean shell (CBS), a main byproduct of cocoa processing, represents a source of components such as polyphenols and methylxanthines, which have been associated with a reduced risk of several diseases. Therefore, CBS has potential application as a food ingredient. Intestinal mucosa is exposed to immune and inflammatory responses triggered by dietary agents, such as oxysterols, which derive from cholesterol oxidation and are pro-oxidant compounds able to affect intestinal function. We aimed at investigating the capability of the Forastero cultivar CBS, added or not added to ice cream, to protect against the intestinal barrier damage induced by a dietary oxysterol mixture. Methods: Composition and antioxidant capacity of in vitro digested CBS and CBS-enriched ice cream were analyzed by high-performance liquid chromatography and 1,1-diphenyl-2-picryl-hydrazyl radical-scavenging assay, respectively. CaCo-2 cells differentiated into enterocyte-like monolayer were incubated with 60 µM oxysterol mixture in the presence of CBS formulations. Results: The oxysterol mixture induced tight junction impairment, interleukin-8 and monocyte chemoattractant protein-1 cell release, and oxidative stress-related nuclear factor erythroid 2 p45-related factor 2 response Nrf2. Both CBSs protected cells from these adverse effects, probably thanks to their high phenolic content. CBS-enriched ice cream showed the highest antioxidant capacity. Theobromine, which is in high concentrations of CBS, was also tested. Although theobromine exerted no effect on Nrf2 expression, its anti-inflammatory cooperating activity in CBS effect cannot be excluded. Conclusions: Our findings suggest that CBS-enriched ice cream may be effective in the prevention of gut integrity damage associated with oxidative/inflammatory reactions.

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3394 ◽  
Author(s):  
Seon Min Lee ◽  
Na-Hyun Kim ◽  
Sangbum Lee ◽  
Yun Na Kim ◽  
Jeong-Doo Heo ◽  
...  

Crohn’s disease (CD) and ulcerative colitis (UC), collectively referred to as inflammatory bowel disease (IBD), are autoimmune diseases characterized by chronic inflammation within the gastrointestinal tract. Debromohymenialdisine is an active pyrrole alkaloid that is well known to serve as a stable and effective inhibitor of Chk2. In the present study, we attempted to investigate the anti-inflammatory properties of (10Z)-debromohymenialdisine (1) isolated from marine sponge Stylissa species using an intestinal in vitro model with a transwell co-culture system. The treatment with 1 attenuated the production and gene expression of lipopolysaccharide (LPS)-induced Interleukin (IL)-6, IL-1β, prostaglandin E2 (PGE2), and tumor necrosis factor-α in co-cultured THP-1 macrophages at a concentration range of 1–5 μM. The protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were down-regulated in response to the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) translocation into the nucleus in cells. In addition, we observed that 1 markedly promoted the nuclear translocation of nuclear factor erythroid 2 related factor 2 (Nrf2) and subsequent increase of heme oxygenase-1 (HO-1) expression. These findings suggest the potential use of 1 as a pharmaceutical lead in the treatment of inflammation-related diseases including IBD.


2020 ◽  
Vol 21 (16) ◽  
pp. 5825 ◽  
Author(s):  
Amanda Kristiansson ◽  
Sara Davidsson ◽  
Maria E. Johansson ◽  
Sarah Piel ◽  
Eskil Elmér ◽  
...  

Oxidative stress is associated with many renal disorders, both acute and chronic, and has also been described to contribute to the disease progression. Therefore, oxidative stress is a potential therapeutic target. The human antioxidant α1-microglobulin (A1M) is a plasma and tissue protein with heme-binding, radical-scavenging and reductase activities. A1M can be internalized by cells, localized to the mitochondria and protect mitochondrial function. Due to its small size, A1M is filtered from the blood into the glomeruli, and taken up by the renal tubular epithelial cells. A1M has previously been described to reduce renal damage in animal models of preeclampsia, radiotherapy and rhabdomyolysis, and is proposed as a pharmacological agent for the treatment of kidney damage. In this paper, we examined the in vitro protective effects of recombinant human A1M (rA1M) in human proximal tubule epithelial cells. Moreover, rA1M was found to protect against heme-induced cell-death both in primary cells (RPTEC) and in a cell-line (HK-2). Expression of stress-related genes was upregulated in both cell cultures in response to heme exposure, as measured by qPCR and confirmed with in situ hybridization in HK-2 cells, whereas co-treatment with rA1M counteracted the upregulation. Mitochondrial respiration, analyzed with the Seahorse extracellular flux analyzer, was compromised following exposure to heme, but preserved by co-treatment with rA1M. Finally, heme addition to RPTE cells induced an upregulation of the endogenous cellular expression of A1M, via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-pathway. Overall, data suggest that A1M/rA1M protects against stress-induced damage to tubule epithelial cells that, at least partly, can be attributed to maintaining mitochondrial function.


2018 ◽  
Vol 19 (9) ◽  
pp. 2563 ◽  
Author(s):  
Jung-Pyo Yang ◽  
Ji-Hun Shin ◽  
Seung-Hwan Seo ◽  
Sang-Gyun Kim ◽  
Sang Lee ◽  
...  

The progress of the hepatic steatosis (HS), a clinicopathological status, is influenced by cellular oxidative stress, lipogenesis, fatty acid (FA) oxidation, and inflammatory responses. Because antioxidants are gaining attention as potent preventive agents for HS, we aimed to investigate anti-lipogenic effects of the antioxidants vitamin C (VC), N-acetylcysteine (NAC), and astaxanthin (ATX) using hepatocytes. For this, we established an in vitro model using 1 mM oleic acid (OA) and human liver hepatocellular carcinoma (HepG2) cells; 10 μM antioxidants were evaluated for their ability to reduce fat accumulation in hepatocytes. Our results showed that all three antioxidants were effective to reduce fat accumulation for the molecular targets such as reduction in lipid droplets, triglyceride (TG) concentration, reactive oxygen species (ROS) production, and cell apoptosis, as well as in gene expressions of endoplasmic reticulum (ER) stress-related effectors, lipogenesis, and inflammatory cytokines. There were simultaneous increases in diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effect, cell survival, AMPK phosphorylation, NRF2-related gene expression for cellular defense, and FA β-oxidation. However, among these, ATX more effectively inhibited ER stress and lipogenesis at the intracellular level than VC or NAC. Consequently, ATX was also more effective in inhibiting cell death, lipotoxicity, and inflammation. Our result emphasizes that ATX achieved greater lipotoxicity reduction than VC and NAC.


Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 7
Author(s):  
Sengul Uysal

Many plants with high antioxidant activity are great of significant in the pharmaceutical and cosmetic industries. Oxidative stress plays a major part in the development of many diseases including cancer, which is known imbalance free radicals and antioxidants. Herein, new natural antioxidant compounds have great interest in the scientific research. The genus Silene is a major group in the Caryophyllaceae family. In Turkey, Silene species have been used for several medicinal purposes such as skin softening, asthma, bronchitis. In our study, the antioxidant capacity of three Silene species (S. conoidea, S. dichotoma and S. italica) were evaluated by different in vitro assays, including free radical scavenging, reducing power, metal chelating, and phosphomolybdenum. In addition, total phenolic and flavonoid contents were analyzed spectrophotometrically. The water extracts contained higher total phenolic content than ethyl acetate extracts. All extracts showed antioxidant capacity. This data indicated that Silene species could potentially be used as antioxidant sources in pharmaceutical and cosmetic areas.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
TM Archana ◽  
K Soumya ◽  
Jesna James ◽  
Sudheesh Sudhakaran

Abstract Background Hyperglycemia is the hallmark of diabetes, and the associated oxidative stress is a major concern that invites an array of diabetic complications. The traditional practices of medicare are of great, current interest due to the high cost and side effects of conventional diabetic medications. The present in vitro study focuses on evaluating the potential of various A. occidentale root extracts for their antihyperglycemic and antioxidant potentials. Materials and methods The four different solvent extracts petroleum ether (PEAO), chloroform (CHAO), ethyl acetate (EAAO), and 80 % methanol (80 % MAO) of A. occidentale roots were evaluated for their total phenolic, flavonoid, and antioxidant capacity. Using MIN6 pancreatic β-cells, the cytotoxicity of the extracts was evaluated by MTT assay and the antidiabetic potential by quantifying the insulin levels by ELISA at a higher concentration of glucose. The effect of 80 % MAO on INS gene expression was determined by qRT PCR analysis. Results Among the four different solvent extracts of A. occidentale roots, 80 % MAO showed the highest concentration of phenolics (437.33 ± 0.03 µg GAE/mg), CHAO to be a rich source of flavonoids (46.04 ± 0.1 µg QE/mg) and with the highest total antioxidant capacity (1865.33 ± 0.09 µg AAE/ mg). Evaluation of the free radical scavenging and reducing properties of the extracts indicated 80 % MAO to exhibit the highest activity. The MTT assay revealed the least cytotoxicity of all four extracts. 80 % MAO enhanced INS up-regulation as well as insulin secretion even under high glucose concentration (27mM). Conclusions The present study demonstrated that the A. occidentale root extracts have effective antihyperglycemic and antioxidative properties, together with the potential of normalizing the insulin secretory system of β-cells. Above mentioned properties have to be studied further by identifying the active principles of A. occidentale root extracts and in vivo effects. The prospect of the present study is identifying drug leads for better management of diabetes from the A. occidentale root extracts. Graphical abstract


Author(s):  
Renuka Sehrawat ◽  
Rekha Sharma ◽  
Sonika Ahlawat ◽  
Vivek Sharma ◽  
M.S. Thakur ◽  
...  

Background: New chicken breeds are being evolved for backyard rural poultry production to overcome the slow growth, late sexual maturity and poor production of indigenous breeds. However, autochthonous poultry is epitomized for quality attributes of their products. With this in mind, the present study for the first time explored the antioxidant capacity of meat obtained from a unique Indian chicken, Kadaknath and a synthetic breed of poultry, Jabalpur colour (JBC). Methods: During the period 2018-2020, breast and thigh meat were collected from chickens (n=20/ group) at their commercial slaughter age (20 weeks). Meat extract was used for qualitative evaluation. Antioxidant activity was explored using five well established in vitro methods testing for different antioxidant mechanisms. Result: Both, Kadaknath and JBC meat was proteinaceous with higher protein concentration (g/100 g of wet weight) in the breast (Kadaknath, 25.21±0.31 and JBC, 25.65±0.39) than the thigh (Kadaknath, 19.98±0.29 and JBC, 19.04±0.23). Both the groups exhibited antioxidant capacity in all the assays. They showed good radical scavenging for ABTS and DPPH free radicals. Superiority of Kadaknath meat was ascertained unequivocally by the three assays viz. Ferric reducing antioxidant power (FRAP), lipid oxidation inhibition (TBARS) and metal chelating capacity. FRAP values (mM Fe2+/g of tissue) were 26.97±0.37 and 33.85±0.47 (Kadaknath) and 22.84±0.25 and 26.82±0.36 (JBC) for breast and thigh, respectively. Similarly, Kadaknath meat was more potent (% inhibition) iron chelator (breast, 62.71±0.99 and thigh, 75.07±0.98) in comparison to the JBC (breast, 46.30±2.36 and thigh, 63.12±1.87). Breast meat had better scavenging capacity than the thigh except in FRAP and metal chelating assays. Results provide insight into the antioxidant potential of backyard poultry germplasm thus, laying foundation for developing marketing strategies targeting consumers interested in nutritional quality, animal welfare and environmental sustainability. Furthermore, baseline data has been generated for studying medicinal properties attributed to the black chicken meat of Kadaknath.


2016 ◽  
Vol 44 (06) ◽  
pp. 1127-1143 ◽  
Author(s):  
Min-Jee Kim ◽  
Yung-Choon Yoo ◽  
Nak-Yun Sung ◽  
Julim Lee ◽  
Seok-Rae Park ◽  
...  

In the present study, the anti-inflammatory and antisepticemic activities of a water extract of Liriope platyphylla (LP) were investigated. We first estimated the scavenging activity of DPPH and the hydroxyl radical and total phenolic contents of LP. Results indicated that LP, a rich source of phenolic compounds, showed a remarkable radical scavenging capacity. A MTT assay showed that LP treatment did not affect the toxicity against the RAW 264.7 macrophage cells, up to the concentration of 500[Formula: see text][Formula: see text]g/mL. Treatment of LP significantly attenuated the production of inflammatory mediators, such as nitric oxide (NO), interleukin-6 (IL-6), tumor-necrosis factor (TNF)-[Formula: see text] and prostaglandin (PG)E2 in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages cells. Moreover, LP contributed to the down-regulation of inducible NO synthase (iNOS) and TNF-[Formula: see text] mRNA expression, as well as cyclooxygenase-2 (COX-2) protein expression. A western blotting assay further showed that LP inhibited activation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-[Formula: see text]B. In an animal experiment using an LPS-induced septicemia model in C57BL/6 mice, oral administration of LP (40[Formula: see text]mg/kg body weight) markedly reduced the level of TNF-[Formula: see text] and IL-6 in serum and protected against LPS-induced lethal shock in mice. Taken together, the results of treatments of LP on inhibited LPS-induced inflammatory responses in both in vitro and in vivo models and indicate it may be a promising neutraceutical or medicinal agent to prevent or cure inflammation-related disease.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5371
Author(s):  
Ying Guo ◽  
Zhizhong Ma ◽  
Xianling Ning ◽  
Ying Chen ◽  
Chao Tian ◽  
...  

A novel class of styryl sulfones were designed and synthesized as CAPE derivatives by our work team, which showed a multi-target neuroprotective effect, including antioxidative and anti-neuroinflammatory properties. However, the underlying mechanisms remain unclear. In the present study, the anti-Parkinson’s disease (PD) activity of 10 novel styryl sulfone compounds was screened by the cell viability test and the NO inhibition test in vitro. It was found that 4d exhibited the highest activity against PD among them. In a MPTP-induced mouse model of PD, the biological activity of 4d was validated through suppressing dopamine neurotoxicity, microglial activation, and astrocytes activation. With compound 4d, we conducted the mechanistic studies about anti-inflammatory responses through inhibition of p38 phosphorylation to protect dopaminergic neurons, and antioxidant effects through promoting nuclear factor erythroid 2-related factor 2 (Nrf2). The results revealed that 4d could significantly inhibit 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium (MPTP/MPP+)-induced p38 mitogen-activated protein kinase (MAPK) activation in both in vitro and in vivo PD models, thus inhibiting the NF-κB-mediated neuroinflammation-related apoptosis pathway. Simultaneously, it could promote Nrf2 nuclear transfer, and upregulate the expression of antioxidant phase II detoxification enzymes HO-1 and GCLC, and then reduce oxidative damage.


2018 ◽  
Vol 43 (3) ◽  
pp. 19
Author(s):  
Juliana Metzner Franco ◽  
Silvana Marina Piccoli Pugine ◽  
Antônio Márcio Scatoline ◽  
Mariza Pires De Melo

The aim of the present study was to evaluate in vitro antioxidant capacity of Melissa extract (ME) (Melissa officinalis L.) and its protective effect on peroxyl radical-induced oxidative damage in erythrocytes. ME used in present study was obtained by rota-evaporation of the crude extract (ethanol:water/dried leaves). Total phenolic and flavonoids contend determination, 176.8 ± 13.2 mg GAE/g dw and  26.2 ± 3.2 mg QE/g dw, respectively).  Total equivalent antioxidant activities, TEAC in mg TE/g dw, were 61.4 ± 5.5 and 512.4 ± 77.2 for respective FRAP assay and DPPH• radical-scavenging. The ME acts as an antioxidant on NO and O2•-, when ME exerted a higher antioxidant action on NO scavenging to compared to the ascorbic acid (1.9 times), however, the antioxidant capacity of ME on O2•- was lower than ascorbic acid (5.6 times). The values of hemolysis inhibition from ME (IC50, 2.0 ± 0.5 mg/mL) were higher than ascorbic acid (IC50, 7.1 ± 1.8 mg/mL). Extract of Melissa was able to eliminate biological free radicals, suggesting a potential to prevent oxidative damage in vivo. In fact, the ME exerted protective action on cell membrane lysis in situ.


Antioxidants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 76 ◽  
Author(s):  
Natividad Chaves ◽  
Antonio Santiago ◽  
Juan Carlos Alías

Plants have a large number of bioactive compounds with high antioxidant activity. Studies for the determination of the antioxidant activity of different plant species could contribute to revealing the value of these species as a source of new antioxidant compounds. There is a large variety of in vitro methods to quantify antioxidant activity, and it is important to select the proper method to determine which species have the highest antioxidant activity. The aim of this work was to verify whether different methods show the same sensitivity and/or capacity to discriminate the antioxidant activity of the extract of different plant species. To that end, we selected 12 species with different content of phenolic compounds. Their extracts were analyzed using the following methods: 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, ferric reducing (FRAP) assay, Trolox equivalent antioxidant capacity (ABTS) assay, and reducing power (RP) assay. The four methods selected could quantify the antioxidant capacity of the 12 study species, although there were differences between them. The antioxidant activity values quantified through DPPH and RP were higher than the ones obtained by ABTS and FRAP, and these values varied among species. Thus, the hierarchization or categorization of these species was different depending on the method used. Another difference established between these methods was the sensitivity obtained with each of them. A cluster revealed that RP established the largest number of groups at the shortest distance from the root. Therefore, as it showed the best discrimination of differences and/or similarities between species, RP is considered in this study as the one with the highest sensitivity among the four studied methods. On the other hand, ABTS showed the lowest sensitivity. These results show the importance of selecting the proper antioxidant activity quantification method for establishing a ranking of species based on this parameter.


Sign in / Sign up

Export Citation Format

Share Document