scholarly journals The Potential of Dietary Antioxidants

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1752
Author(s):  
Irene Dini

Oxidative stress happens when the levels of reactive species made from oxygen and nitrogen exceed the body’s antioxidant capacity [...]

2016 ◽  
Vol 99 (5) ◽  
pp. 1219-1222 ◽  
Author(s):  
Jat Rana ◽  
Stephen R Missler ◽  
Kathryn Persons ◽  
Johnson Han ◽  
Teric Li

Abstract In recent years, the role of reactive nitrogen and oxygen species (RNOS) in human disease has been the subject of considerable study. This has led to research on the potential benefit of natural products as dietary antioxidants to mitigate oxidative stress caused by increased RNOS associated with tissue damage. Five physiologically relevant reactive species include peroxyl radical, hydroxyl radical, peroxynitrite anion, superoxide radical anion, and singlet oxygen. Excessive amounts of these species can lead to the degradation of important biomolecules in vivo, and dietary antioxidants have been shown to inhibit damage both in vitro and in vivo. In this investigation, we have discovered that an extract of the fruit from Nitraria tangutorum Bobr. (Tangut white thorn) demonstrates significant antioxidant capacity against all five reactive species. Rapid bioassay-directed fractionation was used to identify antioxidant phytochemicals by collecting fractions from HPLC effluent into 96 well microplates and testing for antioxidant activity against the 2,2-diphenyl-1-picrylhydrazyl radical. Two different classes of phytochemicals, anthocyanins and flavonoids, were associated with antioxidant activity. Active components were further characterized by UV-Vis spectroscopy and high-resolution MS.


2019 ◽  
Vol 22 (7) ◽  
pp. 496-501
Author(s):  
Fatemeh Ahmadi-Motamayel ◽  
Parisa Falsafi ◽  
Hamidreza Abolsamadi ◽  
Mohammad T. Goodarzi ◽  
Jalal Poorolajal

Background: Cigarette smoke free radicals can cause cellular damage and different diseases. All the body fluids have antioxidants which protect against free radicals. Objective: The aim of this study was to evaluate salivary total antioxidant capacity and peroxidase, uric acid and malondialdehyde levels in smokers and a nonsmoking control group. Methods: Unstimulated saliva was collected from 510 males. A total of 259 subjects were current smokers and 251 were non-smokers. The levels of salivary total antioxidant capacity, uric acid, peroxidase and malondialdehyde were measured using standard procedures. Data were analyzed with t test and ANOVA. Results: The smokers were younger and dental hygiene index was higher than healthy nonsmoking controls. The mean total antioxidant capacity in smokers and nonsmokers was 0.13±0.07 and 0.21±011, respectively (P=0.001). Smokers had significantly lower peroxidase and uric acid levels than healthy controls. In addition, the mean malondialdehyde levels in the smokers and nonsmokers were 4.55 ±2.61 and 2.79 ±2.21, respectively (P=0.001). Conclusion: Cigarette smoke produces free radical and oxidative stress, causing many side effects. Salivary antioxidant levels decreased and malondialdehyde levels increased in smokers, indicating the high oxidative stress among smokers compared to nonsmokers. Cigarette smoke had deleterious effects on main salivary antioxidants levels.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Jing-Hua Wang ◽  
Sung-Bae Lee ◽  
Dong-Soo Lee ◽  
Chang-Gue Son

Oxidative stress plays a pivotal role in the progression of chronic hepatitis B; however, it is unclear whether the status of blood oxidative stress and antioxidant components differs depending on the degree of hepatic fibrosis. To explore the relationship between oxidative stress/antioxidant capacity and the extent of hepatic fibrosis, fifty-four subjects with liver fibrosis (5.5 ≤ liver stiffness measurement (LSM) score ≤ 16.0 kPa) by chronic hepatitis B virus (HBV) were analyzed. From the analysis of eight kinds of serum oxidative stress/antioxidant profiles and liver fibrosis degrees, the level of total antioxidant capacity (TAC) reflected a negative correlation with the severity of hepatic fibrosis (Pearson correlation, r = −0.35, p = 0.01). Moreover, TAC showed higher sensitivity (73.91%) than the aspartate transaminase (AST) to platelet ratio index (APRI, 56.52%) in the receiver operating characteristic (ROC) curves. Interestingly, the TAC level finely reflected the fibrosis degree in inactive carriers (HBV DNA < 2000 IU/mL), while the APRI did in active carriers (HBV DNA > 2000 IU/mL). In conclusion, TAC is a promising biomarker for evaluating the progression of liver fibrosis in patients with HBV, and this finding may indicate the involvement of TAC-composing factors in the pathogenesis of hepatic fibrosis in chronic HBV carriers.


Healthcare ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 368
Author(s):  
Rosamaria Militello ◽  
Simone Luti ◽  
Matteo Parri ◽  
Riccardo Marzocchini ◽  
Riccardo Soldaini ◽  
...  

Background: Most studies on oxidative stress markers and antioxidant levels have been conducted in male athletes, although female participation in sport has increased rapidly in the past few decades. In particular, it could be important to assess oxidative stress markers in relation to the training load because the anaerobic path becomes predominant in high-intensity actions. Methods: Ten female professional basketball players, performing five 2 h-lasting training sessions per week, and 10 sedentary control women were investigated. Capillary blood and saliva samples were collected in the morning before the training session. The antioxidant capacity and the levels of reactive oxygen metabolites on plasma were determined measuring Reactive Oxygen Metabolite and Biological Antioxidant Potential (d-ROMs and the BAP Test). Salivary cortisol was detected by using commercial enzyme-linked immunosorbent assay kit. Results: The antioxidant capacity (BAP value) was significantly higher in elite basketball players (21.2%; p < 0.05). Conversely, cortisol (51%; p < 0.009) and the levels of oxidative species (d-ROM, 21.9%; p < 0.05) showed a significant decrease in elite athletes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qingfeng Ge ◽  
Bo Yang ◽  
Rui Liu ◽  
Donglei Jiang ◽  
Hai Yu ◽  
...  

Abstract Background Excessive reactive oxygen species (ROS) can cause serious damage to the human body and may cause various chronic diseases. Studies have found that lactic acid bacteria (LAB) have antioxidant and anti-aging effects, and are important resources for the development of microbial antioxidants. This paper was to explore the potential role of an antioxidant strain, Lactobacillus plantarum NJAU-01 screened from traditional dry-cured meat product Jinhua Ham in regulating D-galactose-induced subacute senescence of mice. A total of 48 specific pathogen free Kun Ming mice (SPF KM mice) were randomly allocated into 6 groups: control group with sterile saline injection, aging group with subcutaneously injection of D-galactose, treatments groups with injection of D-galactose and intragastric administration of 107, 108, and 109 CFU/mL L. plantarum NJAU-01, and positive control group with injection of D-galactose and intragastric administration of 1 mg/mL Vitamin C. Results The results showed that the treatment group of L. plantarum NJAU-01 at 109 CFU/mL showed higher total antioxidant capacity (T-AOC) and the antioxidant enzymatic activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) than those of the other groups in serum, heart and liver. In contrast, the content of the oxidative stress marker malondialdehyde (MDA) showed lower levels than the other groups (P < 0.05). The antioxidant capacity was improved with the supplement of the increasing concentration of L. plantarum NJAU-01. Conclusions Thus, this study demonstrates that L. plantarum NJAU-01 can alleviate oxidative stress by increasing the activities of enzymes involved in oxidation resistance and decreasing level of lipid oxidation in mice.


2021 ◽  
Vol 19 (4) ◽  
Author(s):  
Taslima Nigar ◽  
Annekathryn Goodman ◽  
Shahana Pervin

Abstract Purpose Over the past several decades, research has suggested reactive oxygen species act as cofactors for cervical cancer development. The aim of this study is to evaluate the antioxidant and lipid peroxidation status in cervical cancer patients in Bangladesh. Methods From December 2017 to 2018, a cross-sectional observational study was conducted on 50 cervical cancer patients and 50 controls. Plasma levels of lipid peroxidation and total antioxidant capacity were measured. The Student’s t test was used for statistical analysis. P values less than 0.05 were taken as a level of significance. Results There was a significant reduction in total antioxidant levels in patients with cervical cancer, 972.77 ± 244.22 SD µmol equivalent to ascorbic acid/L, compared to normal controls, 1720.13 ± 150.81 SD µmol equivalent to ascorbic acid/L (P < 0.001). Levels of lipid peroxidation were found to be significantly higher in cervical cancer, 7.49 ± 2.13 SD µmol/L, than in women without cervical cancer, 3.28 ± 0.58 SD µmol/L (P < 0.001). The cervical cancer patients had significantly higher levels of oxidative stress index (0.83 ± 0.31) in comparison to controls (0.19 ± 0.04) (P < 0.001). Conclusion There was an increased oxidative stress index due to imbalance between lipid peroxidation generation and total antioxidant capacity in cervical cancer patients. Further studies are needed to explore the role of oxidative stress as a cofactor for cervical carcinogenesis.


Crop Science ◽  
2009 ◽  
Vol 49 (2) ◽  
pp. 628-636 ◽  
Author(s):  
Éva Darkó ◽  
Helga Ambrus ◽  
József Fodor ◽  
Zoltán Király ◽  
Beáta Barnabás

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 682 ◽  
Author(s):  
Julia Lorenzon dos Santos ◽  
Alexandre Schaan de Quadros ◽  
Camila Weschenfelder ◽  
Silvia Bueno Garofallo ◽  
Aline Marcadenti

Atherosclerosis is related to fat accumulation in the arterial walls and vascular stiffening, and results in acute coronary syndrome which is commonly associated with acute myocardial infarction. Oxidative stress participates in the pathogenesis of atherosclerosis. Thus, the inclusion of food sources of dietary antioxidants, such as different kinds of nuts, may improve biomarkers related to oxidative stress, contributing to a possible reduction in atherosclerosis progression. This article has briefly highlighted the interaction between oxidative stress, atherosclerosis, and cardiovascular disease, in addition to the effect of the consumption of different nuts and related dietary antioxidants—like polyphenols and vitamin E—on biomarkers of oxidative stress in primary and secondary cardiovascular prevention. Studies in vitro suggest that nuts may exert antioxidant effects by DNA repair mechanisms, lipid peroxidation prevention, modulation of the signaling pathways, and inhibition of the MAPK pathways through the suppression of NF-κB and activation of the Nrf2 pathways. Studies conducted in animal models showed the ability of dietary nuts in improving biomarkers of oxidative stress, such as oxLDL and GPx. However, clinical trials in humans have not been conclusive, especially with regards to the secondary prevention of cardiovascular disease.


Sign in / Sign up

Export Citation Format

Share Document